# PRACTICA 4: Diseño del convertidores de CD-CD Elevadoras.

## Objetivo:

Que alumno aprenda a diseñar el convertidor de CD-CD elevador fijo y compruebe su funcionamiento, a si como también los problemas obtenidos al implementarlo.

#### Material:

- 1 Multímetro digital.
- 1 Medidor de Inductancias
- 1 Osciloscopio
- 1 Fuente de CD no regulada.

#### Introducción:

En un regulador elevador el voltaje de salida es mayor que el voltaje de entrada, De aquí la palabra "elevador" En la Figura 1 apararse un regulador elevador que utiliza un MOSFET de potencia. La operación del circuito puede dividirse en dos modos:

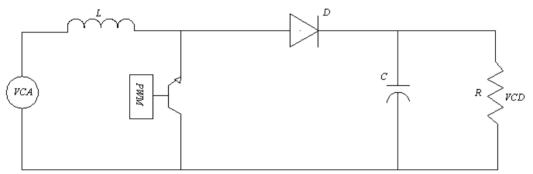



Figura 1: Convertidor de CD-CD, elevador.

El modo 1: empieza cuando se activa en transistor  $M_1$  en t = 0. La corriente de entrada se eleva fluyendo a través del inductor L y del transistor  $Q_1$ .

El modo 2: empieza ciando se desconecta el transistor  $M_I$  en  $t = t_I$ . La corriente que estaba fluyendo a través del transistor fluirá ahora a través de L, C, la carga y el diodo  $D_m$ . La corriente se abate hasta que se vuelva a activar en el siguiente ciclo el transistor  $M_I$ . La energía almacenada en el inductor es transferida a la carga.

### Desarrollo:

1. En esta práctica se ejemplifica un procedimiento de diseño para fuentes conmutadas elevadora Fija. Por lo tanto se calcula un convertidor que tenga un voltaje de salida, 2 veces el valor del voltaje de entrada a partir de una fuente de entrada. La corriente en la bobina será permanente y el rizado de la tensión de salida debe ser menor que el 1%. Con una carga es una resistencia y se supone que los componentes son ideales.

El ciclo de trabajo es:

$$D = 1 - \frac{V_o}{V_s}$$

La inductancia se calcula de la siguiente forma:

$$L_{\min} = \frac{(1-D)R}{2f} \qquad L = 1.25 \times L_{\min}$$

La corriente en el inductor es la siguientes:

$$I_L = \frac{V_s}{(1-D)^2 R}$$

A continuación se calcula el valor del rizado de la corriente en el inductor:

$$\frac{\Delta_{i_L}}{2} = \frac{V_s DT}{2L}$$

Se presenta los limites entre los cuales se va a encontrar el rizado de la corriente del inductor:

$$I_{\text{max}} = I_L + \frac{\Delta_{i_L}}{2}$$

$$I_{\min} = I_L - \frac{\Delta_{i_L}}{2}$$

Por ultimo se calcula el valor del capacitor del filtro:

$$C = \frac{D}{R(\frac{\Delta Vo}{Vo})f}$$

2. Realizar la mediciones del circuito y comprobar el circuito.

NOTA: (Cuidar los valores máximos de corriente y voltajes).

Reportar:

- a) Comparación de los valores medidos con respecto a los calculados.
- b) Conclusiones