

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

Facultad de Ingeniería Eléctrica.

"Practicas del Laboratorio de Maquinas Eléctricas II"

Laboratorio de Ingeniería Eléctrica.

Experimentos

con equipo

eléctrico

THEODORE WILDI

profesor de Ingeniería Electrica Universidad Laval Ocebec, Canadá

MICHAEL J. DE VITO

Ingenieria de Proyectos, Buck Engineering Co. Luc. Farmingdale, Nueva Yersey, U. S. A.

EDITORIAL LIMUSA MEXICO 1975

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

Nombre de la materia: Laboratorio de Máquinas Eléctricas II

Clave: IA0001-L

No. de horas/semana:2Total de horas:32No. de créditos:4Prerrequisitos:* (*)

Objetivo general: Que el alumno conozca experimentalmente el funcionamiento y la operación de las máquinas de inducción, síncrona y de CD, así como su constitución física y las variables que modifican la operación de las mismas para su control.

Contribución a los atributos de egreso y su nivel de aportación

• **AE1.** Aplicar los conocimientos de ingeniería adquiridos durante sus estudios para elaborar proyectos de ingeniería que resuelvan problemas específicos. (Medio)

• AE2. Identificar, formular y resolver problemas de ingeniería mediante un pensamiento crítico y asertivo, basados en los principios de ciencias básicas e ingeniería.

Programa sintético

1. Motor de pasos	2 hrs.
2. Motores monofásicos	
3. Motores de CD en derivación	
4. Generador de CD con excitación independiente	
5. Motor de CD en serie	2 hrs.
6. Motor de CD compuesto	2 hrs.
7. Examen	
8. Motor de inducción de rotor devanado	
9. Motor de inducción Jaula de Ardilla	
10. Máquina de inducción operando como generador	
11. Examen	2 hrs.
12. Máquina síncrona como motor	
13. Máquina síncrona como generador	
14. Máquina síncrona, sincronización al Sistema Eléctrico	
15. Sincronización de un generador síncrono con un generador asíncrono	
16. Examen	0.1
	Total: 32 hrs.

Programa desarrollado

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

or de pasos2 hrs.
ores monofásicos2 hrs.
ores de CD en derivación2 hrs.
nerador de CD con excitación independiente2 hrs.
or de CD en serie2 hrs.
or de CD compuesto2 hrs.
men2 hrs.
or de inducción de rotor devanado2 hrs.
or de inducción Jaula de Ardilla2 hrs.
aquina de inducción operando como generador2 hrs.
amen2 hrs.
aquina síncrona como motor2 hrs.
iquina síncrona como generador2 hrs.
iquina síncrona, sincronización al Sistema Eléctrico2 hrs.
ncronización de un generador síncrono con un generador asíncrono2 hrs.
amen2 hrs.

Bibliografía básica:

Experimentos con Equipo Eléctrico; Wildi, T, DeVito, M.J.; Editorial Limusa.

Bibliografía complementaria:

Máquinas Eléctricas; Fitzgerald, A. E., Kingsley, C. Jr., Umans, S. D.; 6ta. Edición; McGraw-Hill. Electrical Machines, Drives, and Power Systems; Theodore Wildi; 5ta. Edición; Prentice-Hall. Máquinas Eléctricas Rotativas y Transformadores; Richardson, D. V., Caisse, A. J. Jr.; 4ta. Edición; Prentice Hall. Máquinas Eléctricas; Sanjurjo N., R.; McGraw-Hill. Máquinas Eléctricas; Chapman, S. J.; McGraw-Hill. Máquinas Electromagnéticas y Electromecánicas; Matsch, L. W.; RSISA.

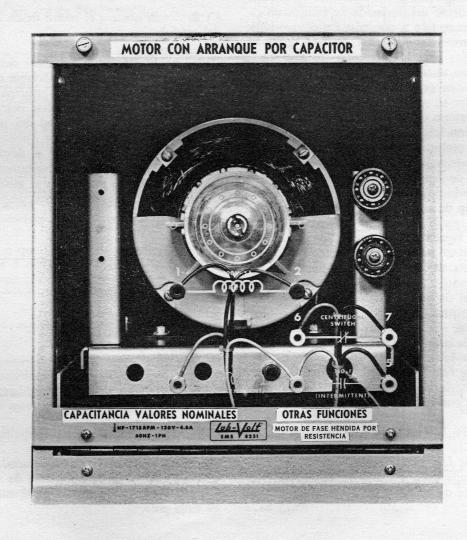
Metodologías de enseñanza-aprendizaje:

 Revisión de conceptos, análisis y solución de problemas en clase 	(X)
Lectura de material fuera de clase	(X)
Fiercicios fuera de clase (tareas)	(X)

Metodologías de evaluación:

Asistencia
 (X)

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO


FACULTAD DE INGENIERÍA ELÉCTRICA

• Exámenes de academia o departamentales (X)

Revisores:

M.C. José Alberto Avalos González Dr. Carlos Pérez Rojas Ing. Gustavo Saucedo Zavala Dr. Juan Carlos Silva Chávez

EL MOTOR MONOFASICO DE FASE HENDIDA, PARTE I

Estudiar la estructura de un motor de fase hen-

Medir la resistencia de sus devanados.

EXPOSICION

Si la potencia monofásica estándar que se utiliza en las casas se va a usar para arrancar y operar un motor de c-a, es necesario hacer algo para producir dos fases. Por lo general, los medios para derivar dos fases de una sola, o sea, para efectuar la división de fase forman parte del circuito del estator del motor de c-a. La potencia bifásica crea el campo magnético giratorio.

En uno de los métodos se emplea un devanado auxiliar especial integrado dentro del estator, que se conocc con el nombre de devanado de arranque (auxiliar), para diferenciarlo del devanado de operación (principal) del estator. En motores de c-a de fase hendida, el devanado de arranque se utiliza sólo para poner en marcha el motor, y tiene una resistencia elevada v poca reactancia inductiva. El devanado de operación tiene poca resistencia y elevada reactancia. Cuando se aplica inicialmente la potencia, los dos devanados se energizan. Debido a sus diferentes reactancias inductivas, la corriente del devanado de funcionamiento se atrasa con respecto a la comiente del devanado de arranque, creándose una diferencia de fase entre las dos. Lo ideal sería que la diferencia de fase fuese de 90 grados; pero usualmente es mucho menor. No obstante, los campos generados por los devanados están defasados entre si, con lo cual se produce un campo magnético giratorio en el estator. Esto produce un par en el rotor, con lo cual el motor arranca.

Cuando el motor alcanza la velocidad de operación, el rotor puede seguir al campo magnético creado por el devanado de operación, y ya no se necesita el campo del devanado de arranque. Este último es desconectado por medio de un dispositivo mecánico denominado interruptor centrífugo, ya que funciona a base de fuerza centrífuga creada por las revoluciones del rotor. El sentido de giro de un campo giratorio de fase hendida se puede invertir, invirtiendo las conexiones del devanado de arranque. Esto hace variar el sentido del cambio inicial de fase, creando un campo magnético giratorio en sentido opuesto.

La velocidad del motor depende esencialmente de la frecuencia de la línea de alimentación de c-a y del

número de polos del estator.

El motor de fase hendida, al igual que cualquier motor monofásico de inducción, vibra mecánicamente al doble de la frecuencia de la línea de alimentación.

INSTRUMENTOS Y EQUIPO

Módulo motor de fase hendida con EMS 8851 arranque por capacitor Módulo de fuente de energía EMS 8821 $(0-120V \ c-d)$

Módulo de medición de c-d (20V, 2.5A)Cables de conexión Misceláneos: Ohmímetro

EMS 8412 EMS 8941

PROCEDIMIENTOS

Advertencia: ¡En este Experimento de Laboratorio se manejan altos voltajes! ¡No haga ninguna conexión cuando la fuente esté conectada! ¡La fuente debe desconectarse después de hacer cada medición!

Examine la estructura del Módulo EMS 8251 de motor de fase hendida con arranque por capacitor, fijandose especialmente en el motor, el interruptor centrifugo, las terminales de conexión y el alambrado.

El capacitor, que va montado en la parte posterior del módulo, se usa solamente cuando aquél se conecta como motor de arranque por capacitor.

Si observa el motor desde la parte delantera del módulo:

	a)	El dev	anado p	rincipal	dei	estator	se	CO	m
pon	e de n	ouchas i	vueltas c	le alam	bre d	e diáme	tro	gra	ın
de.	Identi	fique el	devana	do prin	cipal				
			-						

b) El devanado auxiliar del estator, arrollado dentro del devanado principal del mismo, se compone de un número menor de vueltas de alambre de menor diámetro. Identifique el devanado auxiliar. e) ¿Van montados exactamente en la misma

forma el devanado principal y el auxiliar qu tro de aquél? ¿Se encuentran desplazados ¿Por qué?	entre sí
·	

d)	;Cuántos	polos	principales	tiene	el	estator?
 ٠.,	Codantos	Poros	Pimerpares		~.	Cota to.

e)	¿Cuántos polos auxiliares hay?
f)	Se trata de un motor de polos.

g) Observe que hay varias ranuras distribuidas en cada polo.

 h) Estudie la estructura del rotor. i) Oserve el anillo de aluminio en el extremo del rotor. j) Observe que al abanico está fundido como parte del anillo anterior. k) Observe el entrehierro que hay entre el rotor y el estator. l) Calcule la longitud del entrehierro en milésimos de pulgada.
☐ 3. Si el motor se ve desde la parte posterior del módulo:
a) Identifique el mecanismo del interruptor centrítugo que va montado en el eje. b) Tire hacia afuera de los pesos centrífugos y observe la acción del manguito aislado. c) Observe que los contactos eléctricos estacionarios se abren cuando los pesos se separan. d) Si los resortes del interruptor centrífugo fueran más rígidos, ¿se abrirían los contactos eléctricos a una velocidad del eje mayor o menor?
☐ 4. Si el módulo se ve desde la cara frontal:
a) El devanado principal (que se compone de muchas vueltas de alambre grueso) se conecta a las terminales ————————————————————————————————————

NOTA: El devanado auxiliar puede quemarse si se le deja conectado a la línea de entrada (120V) durante más de unos cuantos segundos.

Advertencia: El interruptor centrífugo siempre debe conectarse en serie con el devanado auxiliar y la línea de entrada, a menos que se indique otra cosa.

El motor monofásico de fase hendida, Parte I

☐ 6. Conecte el circuito de la Figura 31-1 utilizando los Módulos EMS de fuente de alimentación, medición de c-d y motor de fase hendida.

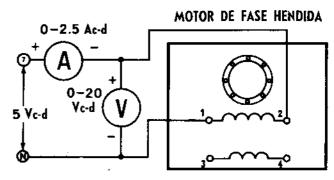


Figura 31-1

☐ 7. Conecte la fuente de alimentación y ajústela exactamente a 5V c-d, tomando esta lectura en el voltímetro conectado al devanado principal (terminales 1 y 2).

 $R_{devanado\ principal} = E/I = ---- ohms$

☐ 8. Reduzca el voltaje a cero y desconecte la fuente de alimentación. Conecte el circuito ilustrado en la Figura 31-2.

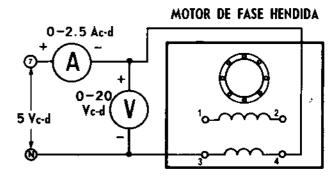
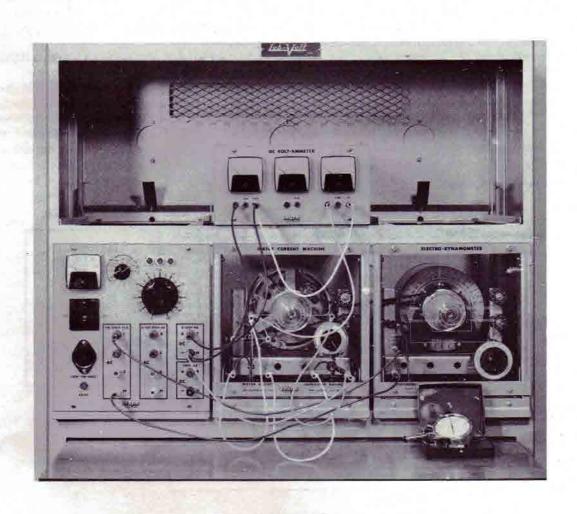



Figura 31-2

9. Conecte la fuente de alimentación y ajústela exactamente a 5V c-d, según lo indique el voltimetro conectado al devanado auxiliar (terminales 3 y 4).	2. ¿Cuántos polos hay, respectivamente, en el devanado de operación y el de arranque, de un motor de fase hendida de 8 polos?
I _{devanado auxiliar} = A c-d	Devanado de operación = polos Devanado de arranque = polos
$R_{devanado\ auxiliar} = E/I = ohms$,
☐ 10. a) Reduzca el voltaje a cero y desconecte la fuente de alimentación.	3. ¿Por qué es necesario un devanado auxíliar?
 □ b) Compare los resultados del Procedimiento 5 con los de los Procedimientos 7 y 9. 	
	4. ¿Por qué debe diferir el devanado auxiliar del principal en un motor de fase hendida?
c) Observe que aunque el devanado principal tiene muchas más vueltas de alambre que el auxiliar, su resistencia es menor. Explique el porqué.	
	5. ¿Qué sucedería si los devanados de arranque y operación fueran idénticos?
PRUEBA DE CONOCIMIENTOS 1. Si un motor de fase hendida tiene dos polos en el devanado principal, ¿cuántos polos se requieren en el devanado auxiliar?	

EL MOTOR DE CD EN DERIVACION

- Estudiar las características del par en función de la velocidad de un motor de c-d con devanado en derivación.
- Calcular la eficiencia de un motor de c-d con devanado en derivación.

EXPOSICION

La velocidad de cualquier motor de c-d depende principalmente de su voltaje de armadura y de la intensidad del campo magnético. En un motor en derivación, el devanado de campo y el de la armadura se conectan en paralelo directamente a las líneas de alimentación de c-d. Si el voltaje de línea de c-d es constante, el voltaje de la armadura y la intensidad del campo serán constantes también. Por lo tanto, el motor en paralelo debería funcionar a una velocidad razonablemente constante.

Sin embargo, la velocidad tiende a disminuir cuando se aumenta la carga del motor. Este descenso de velocidad se debe sobre todo a la resistencia del devanado de la armadura. Los motores en derivación con bajas resistencias en el devanado de la armadura, funcionan a velocidades casi constantes.

Al igual que en la mayoría de los dispositivos de conversión de energía, el motor en derivación de e-d no tiene una eficiencia del 100 %. En otras palabras, no toda la energía eléctrica que se proporciona al motor se convierte en potencia mecánica. La diferencia de potencia entre la entrada y la salida se disipa en forma de calor y se conoce como las "pérdidas" de la máquina. Estas pérdidas aumentan con la carga, haciendo que el motor se caliente mientras produce energía mecánica.

En este Experimento de Laboratorio se investiga la eficiencia de un motor de c-d en derivación.

INSTRUMENTOS Y EQUIPO

Módulo de fuente de energía	•
(120V c-a, 0-120V c-d)	EMS 8821
Módulo de medición de c-d (200V, 5A)	EMS 8412
Módulo de motor/generador de c-d	EMS 8211
Módulo del electrodinamómetro	EMS 8911
Tacómetro manual	EMS 8920
Cables de conexión	EMS 8941
Banda	EMS 8942

PROCEDIMIENTOS

Advertencia: ¡En este Experimento de Laboratorio se manejan altos voltajes! ¡No haga ninguna conexión cuando la fuente esté conectada! ¡La fuente debe desconectarse después de hacer cada medición!

☐ I. Construya el circuito ilustrado en la Figura 24-1, utilizando los Módulos EMS de fuente de energía, motor/generador de c-d, medición de c-d y electrodinamómetro.

¡NO APLIQUE POTENCIA POR AHORA!

Observe que el motor está conectado para funcionar con su campo en paralelo y se conecta a la salida de c-d variable de la fuente de alimentación (terminales 7 y N). El electrodinamómetro se conecta a la salida de 120V en c-a de la fuente de alimentación (terminales 1 y N).

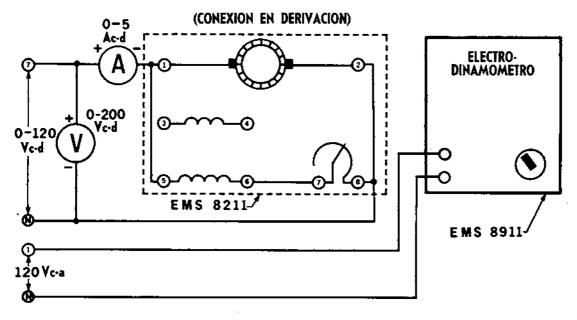


Figura 24-1

Acople el dinamómetro al motor/generador de c-d por medio de la banda, tal como se ilustra en la foto.

- ☐ 2. Ajuste la perilla de control del reóstato de campo en derivación en su posición extrema haciéndolo girar en el sentido de las manecillas del reloj (para obtener una máxima excitación del campo en derivación). Verifique que las escobillas están en la posición neutra.
- ☐ 3. Ajuste la perilla de control del dinamómetro en su posición extrema haciéndola girar en sentido contrario al de las manecillas del reloj (para proporcionar una carga mínima en el arranque del motor de c-d).
- ☐ 4. Conecte la fuente de alimentación y ajuste el voltaje variable de salida a 120 V c-d, guiándose por las lecturas tomadas en el medidor.
- ☐ 5. a) Ajuste el reóstato de campo en derivación a una velocidad en vacío de 1,800 r/min, según lo indique el tacómetro de mano. (Cerciórese de que el voltímetro, conectado a la entrada del circuito, indique exactamente 120V c-d.)
- **b)** Mida la corriente de línea tomando esta lectura en el amperímetro cuando la velocidad del motor sea 1,800 r/min. Anote este valor en la Tabla 24-1.

NOTA: Para un par exacto de 0 lbf.pulg, desacople el motor del dinamómetro.

☐ 6. a) Aplique carga al motor de c-d haciendo variar la perilla de control del dinamómetro hasta que la escala marcada en la carcasa del motor indique 3 lbf.plg. (Si es necesario, reajuste la fuente de energía para mantener 120V c-d exactamente.)

E (VOLTS)	I (AMPS)	VELOCIDAD (r/min)	PAR (lbf. plg)
120	0-7	1,800	0
120	1-25	1,795	3
120	1.95	1,605	8
120	2.65	1,505	9
120	3.8	1,395	12

Tabla 24-1

- **b)** Mida la corriente de línea y la velocidad del motor, y anote estos valores en la *Tabla 24-1*.
- c) Repita esta operación para cada uno de los valores de par indicados en la *Tabla*, en tanto que mantiene una entrada constante de 120V c-d.
- d) Reduzca a cero el voltaje y desconecte la fuente de alimentación.
- ☐ 7. a) Marque los valores de velocidad del motor tomados de la *Tabla 24-1*, en la gráfica de la *Figura 24-2*.
- **b)** Trace una curva continua por los puntos marcados.
- c) La gráfica terminada representa las características de velocidad en función del par, de un motor típico de c-d en derivación. En los dos Experimentos de Laboratorio siguientes se dibujarán gráficas similares para motores de c-d con devanado en serie y compuesto. Luego se compararán y evaluarán las características de velocidad en función del par para cada tipo de motor.

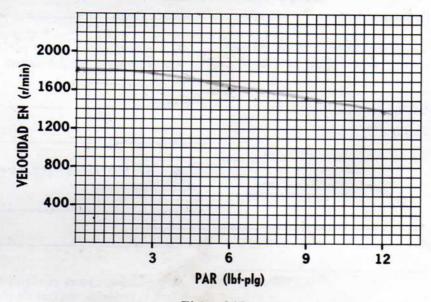


Figura 24-2

☐ 8. Calcule la regulación de velocidad (carga completa = 9 lbf.plg), utilizando la ecuación:	2. Si se sabe que 1 hp equivale a 746 watts, ¿cuál es el valor equivalente en watts de la salida del motor de la Pregunta 1?
o de regulación de velocidad =	motor de la riegutta r
(velocidad en vacío) — (velocidad a plena carga) × 100	salida en watts =W
regulación de velocidad = %	
9. Ajuste la perilla de control del dinamómetro en su posición extrema haciéndola girar en el sentido de las manecillas del reloj (a fin de proporcionar la máxima carga de arranque al motor con devanado en derivación).	3. ¿Cuál es la potencia de entrada (en watts) del motor de la Pregunta 1?
□ 10. a) Conecte la fuente de energía y aumente gra-	entrada en watts =W
dualmente el voltaje en c-d hasta que el motor tome 3A de corriente de línea. El motor debe girar con lentitud o estar parado.	4. Si se conoce la potencia de entrada y la de salida en watts, ¿cuál es la eficiencia del motor de la Pregunta 1?
	% de eficiencia = (potencia de salida/potencia de en trada) $ imes$ 100
$E = \frac{2^2}{160} \text{ V } par = \frac{1.66}{160} lbf.plg$	
c) Reduzca a cero el voltaje y desconecte la fuente de alimentación.	eficiencia =%
11.a) La corriente de línea en el Procedimiento 10 queda limitada sólo por la resistencia a c-d equivalente del motor con devanado en derivación.	5. Calcule las pérdidas (en watts) del motor de la Pregunta 1.
b) Calcule el valor de la corriente de arranque que requiere un motor de c-d con devanado en derivación, cuando se le aplica todo el voltaje de la línea (120V c-d).	pérdidas =W 6. Indique algunas de las partes del motor en que se producen estas pérdidas.
corriente de arranque =A	
PRUEBA DE CONOCIMIENTOS	
1. Calcule los hp que desarrolla el motor de c-d con devanado en derivación cuando el par es 9 lbf.plg. Use la ecuación:	7. ¿Disminuirían estas pérdidas si se montara un ventilador en el eje del motor?
$hp = \frac{(r/min) (lbf.plg) (1.59)}{100,000}$	¿Por qué?
	8. Dé dos razones por las que las pérdidas son indescables.
	<u></u>
	9. ¿Cuántas veces es mayor la corriente de arranque, que la corriente normal de plena carga?

EL GENERADOR EN DERIVACION DE CD CON EXCITACION INDEPENDIENTE

- Estudiar las propiedades del generador de c-d en derivación con excitación independiente, en condiciones de vacío y de plena carga.
- 2. Obtener la curya de saturación del generador.
- Obtener la curva del voltaje de armadura en función de la corriente de armadura del generador.

EXPOSICION

Una máquina de c-d puede funcionar ya sea como motor o como generador. El motor convierte la potencia eléctrica en potencia mecánica, en tanto que el generador transforma la potencia mecánica en eléctrica. Por lo tanto, el generador debe ser impulsado mecánicamente a fin de que produzca electricidad.

Puesto que el campo es un electroimán, una corriente debe fluir a través de él para producir un campo magnético. Esta corriente se conoce como corriente de excitación y se puede suministrar al devanado del campo en dos formas: puede provenir de una fuente externa independiente de c-d en cuyo caso el generador se clasifica como generador con excitación independiente, o bien, puede provenir de la propia salida del generador, en cuyo caso se denomina generador con autoexcitación.

Suponga que el campo en derivación se excita por medio de una corriente directa, estableciéndose así un flujo magnético en el generador. Si se aplica un esfuerzo mecánico al eje, el rotor (o más correctamente, la armadura) girará y las bobinas de la armadura cortarán el flujo magnético induciéndose en ellas un voltaje. Este voltaje es de c-a y para obtener la c-d del generador, se deberá utilizar un rectificador. Con este fin se utiliza el conmutador y las escobillas.

El voltaje inducido en las bobinas (y, por lo tanto, el voltaje de c-d en las escobillas) depende exclusivamente de dos cosas: la velocidad de rotación y la intensidad del campo magnético. Si la velocidad se duplica, el voltaje se duplicará también. Si la intensidad del campo se incrementa en un 20 %, el voltaje se incrementa también en la misma proporción.

Aunque una excitación independiente requiere una fuente de alimentación de c-d también independiente, es útil en los casos en que el generador deba responder rápidamente y con precisión a una fuente de control externo, o bien cuando el voltaje de salida deba variar en un rango amplio.

Si no se tiene una carga eléctrica conectada al generador, no fluirá corriente y sólo habrá voltaje en la salida. En cambio, si se conecta una resistencia de carga a la salida, la corriente fluye y el generador comenzará a proporcionar potencia eléctrica a la carga.

Entonces la máquina que impulsa el generador debe proporcionarle una potencia mecánica adicional. Debido a ello, con frecuencia, se observa un incremento en el ruido y la vibración del motor y del generador, junto con una caída en la velocidad.

INSTRUMENTOS Y EQUIPO

Módulo de fuente de alimentación	
(120/208V 3\phi, 120V c-d, 0-120V c-d)	EMS 8821
Módulo de medición de c-d	
(200V, 500mA, 2.5A)	EMS 8412
Módulo de medición de c-a	
$(2.5/2.5/2.5\Lambda)$	EMS 8425
Módulo motor/generador de c-d	EMS 8211
Módulo motor/generador sinerónico	EMS 8241
Módulo de resistencia	EMS 8311
Cables de conexión	EMS 8941
Banda	EMS 8942

PROCEDIMIENTOS

Advertencia: ¡En este Experimento de Laboratorio se manejan altos voltajes! ¡No haga ninguna conexión cuando la fuente esté conectada! ¡La fuente debe desconectarse después de hacer cada medición!

CARACTERISTICA EN VACIO

☐ 1. Puesto que se requiere una velocidad constante de funcionamiento, se usará el motor síncrono para impulsar mecánicamente al generador de c-d. Conecte el circuito que se ilustra en la Figura 27-1, utilizando los Módulos EMS de fuente de alimentación, medición de c-a y motor síncrono.

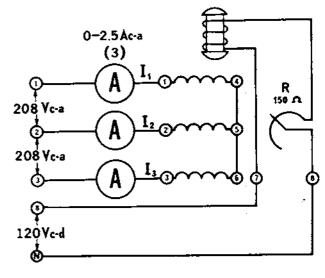
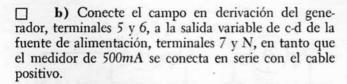



Figura 27-1

INO APLIQUE POTENCIA POR AHORA!

☐ 2. Las terminales 1, 2 y 3 de la fuente de alimentación proporcionan la potencia trifásica fija a los tres devanados del estator. (La potencia trifásica se estudiará en Experimentos de Laboratorio posteriores.) Las terminales 8 y N de la fuente de alimentación proporcionan la potencia fija de c-d para el devanado del rotor. Ajuste la perilla de control del reóstato a la posición apropiada para una excitación normal (Experimento de Laboratorio 23, Procedimiento 6).

☐ 3. a) Conecte el circuito que aparece en la Figura 27-2 con los Módulos EMS motor/generador y de medición de c-d.

- **e)** Conecte el medidor de 200V c-d a la salida del generador (terminales 1 y 2 de la armadura).
- d) Acople el motor síncrono y el generador de c-d por medio de la banda.
- e) Cerciórese de que las escobillas están en la posición neutra.
- f) Pídale al instructor o al maestro que revise su circuito.

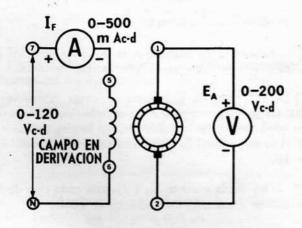
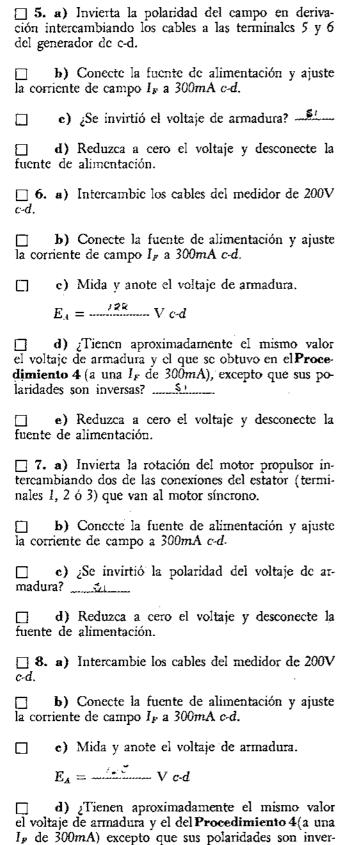


Figura 27-2

☐ 4. a)	Conecte la	a fuente	de alimentación.	El mo-
tor síncro	no debe co	menzar	a funcionar.	


b) Haga variar la corriente de campo en der	ri-
vación I _F , haciendo girar la perilla de control del vo	
taje de la fuente de alimentación. Observe el efect	
en la salida del generador (voltaje de armadura E _A s	e-
gún lo indica el medidor de 200V c-d).	

	Mida y anote en la Tabla 27-1, el voltaje de
armadura	E _A para cada una de las corrientes de campo
que apare	cen en ella.

I _F (miliamperes)	E, (volts)
0	2.6
50	22
100	48
150	70
200	92
250	110
300	124
350	138
400	146

Tabla 27-1

□ fuent		Redu			el ·	voltaj	еу	desco	necte	: la
de ar cero?	e) madı	¿Pued ura a j	de exp pesar	licar de qu	por ie la	qué : corri	se tie ente	ene ui de ca	n vol mpo	taje sea
	po	r e	t ma	ojne	tien	70 1	cm	ane	nte	
								-1		

e) Reduzca a cero el voltaje y desconecte la

CARACTERISTICA DE CARGA

9. Conecte el circuito que se ilustra en la Figura 27-3, utilizando el Módulo EMS de resistencia. Coloque los interruptores de resistencia de tal modo que la resistencia total de carga sea 120 ohms. (Consulte la Tabla I que aparece en la parte final de este Manual.)

☐ 10. a) Conecte la fuente de alimentación. El motor síncrono debe comenzar a girar.

 \square **b)** Ajuste la corriente del campo en derivación I_F , hasta que el generador proporcione un voltaje de salida de 120V c-d. El amperimetro I_A debe indicar l ampere c-d.

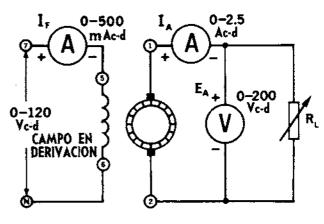


Figura 27-3

 \Box e) Anote la corriente del campo en derivación I_F .

$$I_F = \frac{32b}{mA}$$

Esta es la I_F nominal a la potencia nominal de salida (120V × 1A = 120W) del generador de c-d.

 \square 11. a) Ajuste la resistencia de carga tantas veces cuantas se requieran para obtener cada uno de los valores que aparecen en la *Tabla 27-2*, en tanto que mantenga el valor nominal I_F que encontró en el **Procedimien** to 10.

 \square **b)** Mida y anote E_A e I_A para cada uno de los valores de resistencia indicados en la Tabla.

NOTA: Aunque el valor nominal de la corriente de salida del generador es 1A c-d, puede cargarse hasta 1.5A c-d (50 % de sobrecarga) sin dañarlo.

fuente de alimentación.

(ohms)	(amps)	(voits)	POTENCIA (watts)
₩.	0	130	0
600	0.2	130	
300	0.45	185	
200	0066	124	
150	0.87	120	
120	1.05	118	
100	1.25	115	
80	1.5	.778	
75	1.6	110	

Tabla 27-2

\square 12. a) Con la resistencia de carga ajustada a una corriente de salida I_A de 1.5A, conecte y desconecte la corriente de campo I_F , mediante el cable de conexión de la terminal 6 del generador de c-d.
b) ¿Nota que el motor propulsor funciona con mayor dificultad cuando el generador entrega potencia a la carga?
e) Reduzca a cero el voltaje y desconecte la fuente de alimentación.
☐ 13. a) Calcule y anote la potencia para cada uno de los valores indicados en la Tabla 27-2.
☐ 14. a) Conecte en cortocircuito total la armadura (Terminales 1 y 2).
b) Verifique la posición de la perilla del control de voltaje en la fuente de alimentación; debe ser tal que se obtenga una corriente de campo igual a cero.
C) Conecte la fuente de alimentación.

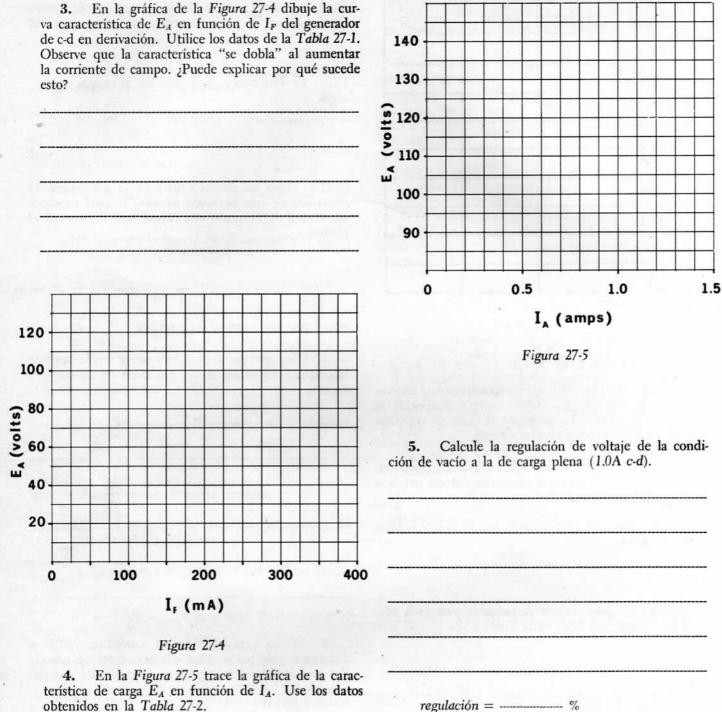
	e)	¿Cuál	es	el valor	de la	corriente	de	campo
en	derivac	ión I,	que	se rec	uiere	para parar	el	motor?

$$I_F = \frac{340}{mA}$$

Desconecte la fuente de alimentación.

NOTA: Con un cortocircuito en la armadura, la corriente en éste aumenta mucho, lo cual produce un efecto de frenado tan fuerte que se parará el motor.

PRUEBA DE CONOCIMIENTOS


vación.	ridad d		. de c	gene	.u.uor	uc c-u	en deri-
		~					
2. una car rios par ciencia	ga, ¿cu a impu	iál es e ilsar est	l valo	r mínin	no de	los hp	180W a necesa- una efi-
una car rios par	ga, ¿cu a impu	iál es e ilsar est	l valo	r mínin	no de	los hp	necesa-
una car rios par	ga, ¿cu a impu	iál es e ilsar est	l valo	r mínin	no de	los hp	necesa-
una car rios par	ga, ¿cu a impu	iál es e ilsar est	l valo	r mínin	no de	los hp	necesa-
una car rios par	ga, ¿cu a impu	iál es e ilsar est	l valo	r mínin	no de	los hp	necesa-
una car rios par	ga, ¿cu a impu	iál es e ilsar est	l valo	r mínin	no de	los hp	necesa-
una car rios par	ga, ¿cu a impu	iál es e ilsar est	l valo	r mínin	no de	los hp	necesa-

Advertencia: No deje el motor en esta condición

campo I_F hasta que el motor se pare.

durante más de dos segundos.

d) Incremente gradualmente la corriente de

EL MOTOR SERIE DE CD

- Estudiar las características del par en función de la velocidad de un motor de c-d con el campo en sene.
- 2. Calcular la eficiencia de un motor de c-d con el campo en serie.

EXPOSICION

Ya se vio que el motor de c-d con el campo en derivación tiene una velocidad casi constante debido a que su voltaje de armadura y su campo magnético se mantienen prácticamente invariables en condiciones que van desde las de vacío hasta las de plena carga. El motor serie se comporta en una forma muy distinta.

En este motor, el campo magnético es producido por la corriente que fluye a través del devanado de la armadura, y a causa de esto es débil cuando la carga del motor es pequeña (el devanado de la armadura toma corriente mínima). El campo magnético es intenso cuando la carga es grande (el devanado de la armadura toma corriente máxima). El voltaje de armadura es casi igual al voltaje de la línea de alimentación (como sucede en el motor con devanado en derivación) y se puede hacer caso omiso de la pequeña caída en el campo en serie. En consecuencia, la velocidad del motor con el campo en serie depende totalmente de la corriente de carga. La velocidad es baja con cargas muy pesadas, y muy alta en vacío. En efecto, muchos motores en serie, al funcionar en vacío, quedarían deshechos por la velocidad tan alta que desarrollan. Las grandes fuerzas relacionadas con altas velocidades, harian que el rotor explote, lo cual sería muy peligroso para las personas y maquinaria que estén cerca.

El par de cualquier motor de c-d depende del producto de la corriente de armadura y del campo magnético. En el caso del motor con devanado en serie, esta relación implica que el par será muy grande a corrientes de armadura intensas, tales como las que se producen durante el arranque. Por lo tanto, el motor serie es ideal para el arranque con cargas de gran inercia y es especialmente útil como propulsor en los omnibuses y trenes eléctricos, así como en aplicaciones de tracción de servicio pesado.

INSTRUMENTOS Y EQUIPO

Módulo de fuente de energía	
(120V c-a, 0-120V c-d)	EMS 8821
Módulo de medición de c-d (200V, 5A)	EMS 8412
Módulo motor/generador de e-d	EMS 8211
Módulo electrodinamómetro	EMS 8911
Tacómetro de mano	EMS 8920
Cables de conexión	EMS 8941
Banda	EMS 8942

PROCEDIMIENTOS

Advertencia: ¡En este Experimento de Laboratorio se manejan altos voltajes! ¡No haga ninguna conexión cuando la fuente esté conectada! ¡La fuente debe desconectarse después de hacer cada medición!

1. Conecte el circuito ilustrado en la Figura 25-1 utilizando los Módulos EMS de fuente de energía, motor generador de c-d, medición de c-d y electrodinamómetro.

INO APLIQUE POTENCIA POR AHORA!

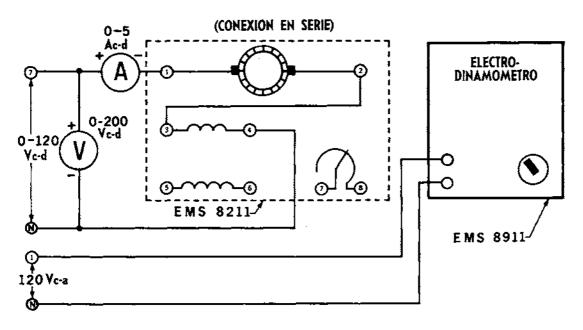


Figura 25-1

Conecte el dinamómetro al motor/generador de c-d por medio de la banda.

Observe que el motor está conectado para una operación en serie (el devanado de campo en derivación y el reóstato no se utilizan en este caso) y está conectado a la salida de c-d variable de la fuente de alimentación (terminales 7 y N). El electrodinamómetro se conecta a la salida de 120V c-a fijos de la fuente de alimentación (terminales 1 y N).

☐ 2. Ajuste la perilla de control del dinamómetro a su posición media (para proporcionar una carga de arranque para el motor de c-d).

☐ 3. a) Conecte la fuente de energía y aumente gradualmente el voltaje de c-d hasta que el motor comience a girar. Observe la dirección de rotación. Si no es en el sentido de las manecillas del reloj, desconecte el motor e intercambie las conexiones del campo serie.

b) Ajuste el voltaje variable a 120V *c-d*, exactamente, tomando esta lectura en el medidor.

☐ 4. a) Ajuste la carga del motor serie de c-d haciendo girar la perilla del dinamómetro hasta que la escala marcada en la carcasa del estator indique 12 lbf.plg. (Si es necesario, ajuste de nuevo la fuente de alimentación para que suministre exactamente 120V c-d.)

b) Mida la corriente de línea y la velocidad del motor (con el tacómetro de mano). Anote estos valores en la *Tabla 25-1*.

☐ c) Repita esta operación para cada valor de par anotado en la *Tabla* manteniendo una entrada constante de 120V c-d.

d) Reduzca a cero el voltaje y desconecte la fuente de alimentación.

E (VOLTS)	I (AMPS)	VELOCIDAD (r/min)	PAR (lbf. plg)
120		5,067	0
120	1.8	3,040	3
120	2.9	2,275	6
120	3.0	1,910	9
120	3.5	1585	12

Tabla 25-1.

NOTA: Para un par de 0 libras fuerza pulgada, exactamente, desconecte el dinamómetro.

☐ 5. a) En la gráfica de la Figura 25-2, marque los valores de velocidad del motor obtenidos en la Tabla 25-1.

□ b) Trace una curva continua por los puntos marcados.

c) La gráfica representa las características de velocidad en función del par de un motor típico de c-d con el campo en serie. En el siguiente Experimento de Laboratorio, se dibujará una gráfica similar para el motor compuesto de c-d, a fin de comparar y evaluar las curvas características de velocidad en función del par de cada tipo de motor.

☐ 6. Calcule la regulación de velocidad (plena carga = 9 lbf.plg) aplicando la ecuación:

% de regulación =

 $\frac{(velocidad\ en\ vacio) - (velocidad\ a\ plena\ carga)}{(velocidad\ a\ plena\ carga)}\times 100$

regulación de velocidad = ------//

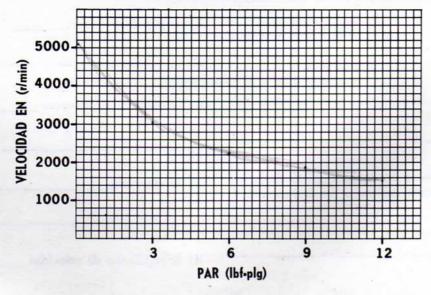


Figura 25-2

☐ 7. Ajuste la perilla de control del dinamómetro a su posición extrema haciéndola girar en el sentido de las manecillas del reloj (para proporcionar la carga máxima de arranque para el motor serie).	3. ¿Cuál es la potencia de entrada (en watts) del motor de la Pregunta 1?
☐ 8. a) Conecte la fuente de alimentación y aumente gradualmente el voltaje de c-d hasta que el motor tome 3 amperes de corriente de línea. El motor debe girar con lentitud.	- File and an endertee - File
☐ b) Mida y anote el voltaje de c-d y el par desarrollado.	entrada en watts =W
$E = \frac{9}{100000000000000000000000000000000000$	4. Si se conocen las potencias de entrada y sali- da en watts, ¿cuál es la eficiencia del motor de la Pre- gunta 1?
☐ e) Baje a cero el voltaje y desconecte la fuente de alimentación.	
☐ 9. a) La corriente de línea del Procedimiento 8 está limitada por la resistencia equivalente a la c-d del motor serie.	·
☐ b) Calcule el valor de la corriente de arranque	eficiencia =%
si se aplicara el voltaje pleno de línea (120V c-d) al motor serie.	5. ¿Cuáles son las pérdidas (en watts) del motor de la misma pregunta?
corriente de arranque =A	
	•
PRUEBA DE CONOCIMIENTOS	
·	hárdidas = W
1. Calcule los hp que desarrolla el motor serie cuando el par es 9 lbf.plg. Use la ecuación:	6. ¿Cuántas veces es mayor la corriente de arranque que la corriente normal a plena carga?
1. Calcule los hp que desarrolla el motor serie	6. ¿Cuántas veces es mayor la corriente de arran-
1. Calcule los hp que desarrolla el motor serie cuando el par es 9 lbf.plg. Use la ecuación:	 6. ¿Cuántas veces es mayor la corriente de arranque que la corriente normal a plena carga? 7. Compare el motor de c-d con devanado en derivado y el de c-d con devanado en serie, de acuer-
1. Calcule los hp que desarrolla el motor serie cuando el par es 9 $lbf.plg$. Use la ecuación: $hp = \frac{(r/min) (lbt.plg) (1.59)}{100,000}$	 6. ¿Cuántas veces es mayor la corriente de arranque que la corriente normal a plena carga? 7. Compare el motor de c-d con devanado en derivado y el de c-d con devanado en serie, de acuerdo con:
1. Calcule los hp que desarrolla el motor serie cuando el par es 9 $lbf.plg$. Use la ecuación: $hp = \frac{(r/min) \ (lbt.plg) \ (1.59)}{100,000}$	 6. ¿Cuántas veces es mayor la corriente de arranque que la corriente normal a plena carga? 7. Compare el motor de c-d con devanado en derivado y el de c-d con devanado en serie, de acuerdo con: a) el par de arranque
1. Calcule los hp que desarrolla el motor serie cuando el par es 9 $lbf.plg$. Use la ecuación: $hp = \frac{(r/min) (lbt.plg) (1.59)}{100,000}$	 6. ¿Cuántas veces es mayor la corriente de arranque que la corriente normal a plena carga? 7. Compare el motor de c-d con devanado en derivado y el de c-d con devanado en serie, de acuerdo con: a) el par de arranque
1. Calcule los hp que desarrolla el motor serie cuando el par es 9 $lbf.plg$. Use la ecuación: $hp = \frac{(r/min) (lbf.plg) (1.59)}{100,000}$	6. ¿Cuántas veces es mayor la corriente de arranque que la corriente normal a plena carga? 7. Compare el motor de c-d con devanado en derivado y el de c-d con devanado en serie, de acuerdo con: a) el par de arranque b) la corriente de arranque c) la eficiencia
1. Calcule los hp que desarrolla el motor serie cuando el par es 9 lbf.plg. Use la ecuación: $hp = \frac{(r/min) (lbt.plg) (1.59)}{100,000}$	6. ¿Cuántas veces es mayor la corriente de arranque que la corriente normal a plena carga? 7. Compare el motor de c-d con devanado en derivado y el de c-d con devanado en serie, de acuerdo con: a) el par de arranque b) la corriente de arranque
1. Calcule los hp que desarrolla el motor serie cuando el par es 9 lbf.plg. Use la ecuación: $hp = \frac{(r/min) (lbt.plg) (1.59)}{100,000}$	6. ¿Cuántas veces es mayor la corriente de arranque que la corriente normal a plena carga? 7. Compare el motor de c-d con devanado en derivado y el de c-d con devanado en serie, de acuerdo con: a) el par de arranque b) la corriente de arranque c) la eficiencia

EL MOTOR COMPUESTO DE CD

4 Jan (1 = 1 (1/pm)) ~ [1.59]

- Estudiar las características del par en función de la velocidad, de un motor compuesto de c-d.
- 2. Calcular la eficiencia de un motor compuesto, de c-d.

EXPOSICION

Si bien la cualidad principal del motor serie de c-d está en su alto valor de par, también existe la desventaja de que los motores de este tipo tienden a sobreacelerarse con cargas ligeras. Esto puede corregirse agregando un campo en derivación conectado en tal forma, que refuerce al campo serie. El motor se convierte entonces en una máquina compuesta acumulativa. En cuanto a la velocidad constante que caracteriza los motores de e-d en derivación, ésta tampoco es conveniente en algunas aplicaciones; por ejemplo, cuando el motor debe mover un volante, ya que se necesita cierta disminución de la velocidad del motor para que el volante pierda su energía cinética. Para las aplicaciones de este tipo (muy frecuentes en el trabajo de la prensa punzonadora), se requiere un motor que tenga una curva característica de velocidad "con caída", es decir, que la velocidad del motor debe bajar notablemente al aumentar la carga. El motor de c-d con devanado compuesto acumulativo es el adecuado para esta clase de trabajo.

El campo en serie también se puede conectar en tal forma que produzca un campo magnético opuesto al del campo en derivación. Así se obtiene un motor diferencial compuesto cuyas aplicaciones son muy limitadas, debido principalmente a que tiende a ser inestable. Esto es así: al aumentar la carga, la corriente de armadura se incrementa, lo cual aumenta la intensidad del campo serie. Puesto que actúa en oposición al devanado en derivación, el flujo total se reduce, dando como resultado un incremento de velocidad. Por lo general, un incremento de velocidad aumenta más todavía la carga, con lo que, a su vez, aumentará aún más la velocidad y puede suceder que el motor se desboque.

A veces los motores diferenciales compuestos se construyen con campos serie débiles, a fin de compensar un poco la caída de velocidad normal producida en un motor en derivación con carga, y lograr así que el motor tenga una velocidad más constante. Los motores diferenciales compuestos se usan muy poco.

INSTRUMENTOS Y EQUIPO

Módulo de fuente de alimentación	
(120V c-a, 0-120V c-d)	EMS 8821
Módulo de medición de c-d (200V, 5A)	EMS 8412
Módulo motor/generador de c-d	EMS 8211
Módulo electrodinamómetro	EMS 8911
Tacómetro de mano	EMS 8920
Cables de conexión	EMS 8941
Banda	EMS 8942

PROCEDIMIENTOS

Advertencia: ¡En este Experimento de Laboratorio se manejan altos voltajes! ¡No haga ninguna conexión cuando la fuente esté conectada! ¡La fuente debe desconectarse después de hacer cada medición!

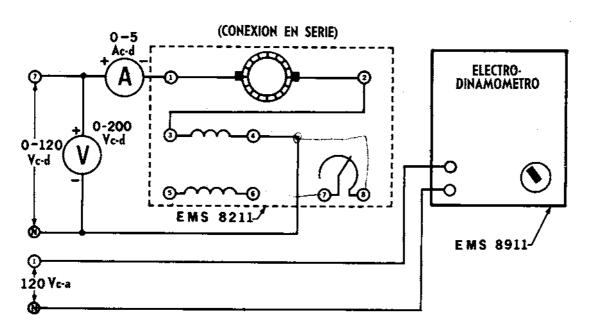


Figura 26-1

☐ 1. Conecte el circuito que aparece en la Figura 26-1, utilizando los Módulos EMS de fuente de energía, motor/generador de c-d, medición de c-d y electrodinamómetro.

¡NO APLIQUE POTENCIA POR AHORA!

Conecte el dinamómetro al motor/generador de c-d mediante la banda.

Observe que el motor está conectado para operar en serie (el devanado de campo en derivación y el reóstato todavía no forman parte del circuito), y está conectado a la salida de c-d variable de la fuente de alimentación (terminales 7 y N). El electrodinamómetro está conectado a la salida fija de 120V c-a de la fuente de alimentación (terminales N y I).

- ☐ 2. Ajuste la perilla de control del dinamómetro a su posición extrema haciéndola girar en sentido contrario al de las manecillas del reloj (a fin de proporcionar una carga mínima de arranque para el motor).
- ☐ 3. a) Conecte la fuente de alimentación e incremente gradualmente el voltaje de c-d hasta que el motor comience a girar. Observe la dirección de rotación. Si no es en el sentido de las manecillas del reloj, desconecte la fuente e intercambie las conexiones del campo serie.
- □ b) Reduzca a cero el voltaje y desconecte la fuente de alimentación.
- ☐ 4. El campo en derivación debe conectarse en serie con el reóstato y a las terminales 1 y 4, como se indica en la Figura 26-2.

- 5. Conecte la fuente de alimentación y ajuste el voltaje a 120V c-d, según lo indique el medidor. Si el motor desarrolla una velocidad excesiva, esto significa que funciona en forma diferencial compuesta. Si éste es el caso, reduzca a cero el voltaje y desconecte la fuente de alimentación. Intercambie las conexiones del campo en derivación a las terminales 1 y 4, para obtener el modo de operación acumulativo compuesto.
- ☐ 6. Con la entrada a un nivel de 120V c-d exactamente, ajuste el reóstato del campo en derivación para una velocidad de motor en vacio de 1,800 r/min, tomando esta lectura en el tacómetro de mano.
- ☐ 7. a) Aplique carga al motor de c-d haciendo girar la perilla de control del dinamómetro hasta que la escala marcada en la carcasa del estator indique 3 lbf.plg. (Si es necesario. ajuste de nuevo la fuente de alimentación para tener siempre 120V c-d exactamente.)
- **b)** Mida la corriente de línea y la velocidad del motor, y anote estos valores en la Tabla 26-1.
- **c)** Repita esta operación para cada valor de par que aparece en la *Tabla*, mientras mantiene una entrada constante de *I20V c-d*.
- d) Reduzca a cero el voltaje y desconecte la fuente de alimentación.

NOTA: Para obtener un par exacto de 0 lbf.plg, desconecte el motor del dinamómetro.

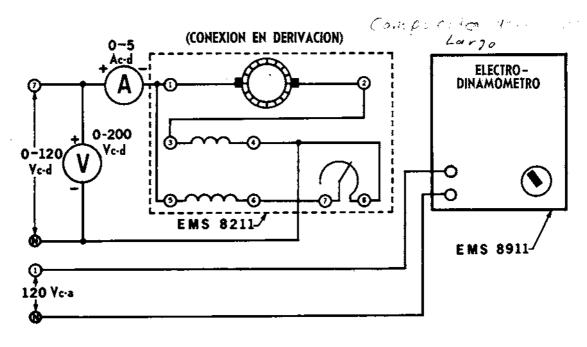


Figura 26-2

☐ 8. a) En la gráfica de la Figura 26-3, marque los valores de velocidad de motor obtenidos en la Tabla 26-1.

E (VOLTS)	Ĭ (AMPS)	VELOCIDAD (r/min)	PAR (lbf. plg)
120	0.6	1,800	0
120	1.2	1,595	3
120	1.7	1,460	6
120	2,15	1,350	9
120	2.62	1,295	12

Tabla 26-1

- □ b) Trace una curva continua por los puntos marcados.
- c) La gráfica representa la curva característica de la velocidad en función del par de un motor típico de c-d con devanado compuesto.
- ☐ 9. Calcule la regulación de velocidad (carga plena = 9 lbf.plg), utilizando la ecuación:

% de regulación =

$$\frac{(velocidad\ en\ vacío) - (velocidad\ a\ plena\ carga)}{(velocidad\ a\ plena\ carga)} \times 100$$

regulación de velocidad = ______%

- ☐ 10. Ajuste la perilla de control del dinamómetro en su posición extrema haciéndola girar en el sentido de las manecillas del reloj (para obtener la máxima carga de arranque para el motor compuesto).
- ☐ 11. a) Conecte la fuente de alimentación e incremente gradualmente el voltaje de c-d hasta que el motor tome 3 amperes de corriente de línea. El motor debe girar con mucha lentitud o bien estar parado.
- □ b) Mida y anote el voltaje de c-d y el par desarrollado.

$$E = \frac{38.5}{100} \text{ V par} = \frac{11}{100} \text{ lbf.plg}$$

- e) Reduzca a cero el voltaje y desconecte la fuente de alimentación.
- ☐ 12. a) La corriente de línea del *Procedimiento* 11 sólo está limitada por la resistencia equivalente a la c-d del motor compuesto.
- **b)** Calcule el valor de la corriente de arranque si se aplicara voltaje pleno de línea (120V c-d) al motor compuesto de c-d.

corriente de arranque = ______A

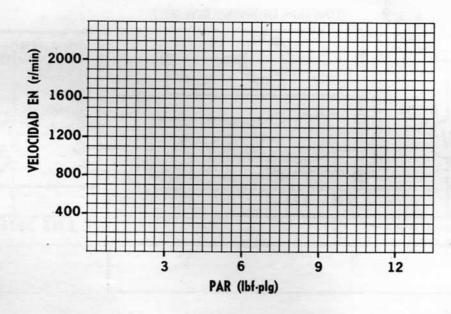


Figura 26-3

PRUEBA DE CONOCIMIENTOS

Si se conoce la potencia de entrada y la de salida en watts, calcule la eficiencia del motor de la Calcule los hp que desarrolla el motor com-Pregunta 1. puesto de c-d, cuando el par es 9 lbf.plg. Use la ecuación: ______ eficiencia = ______% hp =5. ¿Cuáles son las pérdidas (en watts) del motor de la Pregunta 1? Si se sabe que 1 hp equivale a 746 watts, ¿cuál es el valor en watts de la salida del motor de la Pregunta 1? ______ pérdidas = _____ W ¿Cuántas veces es mayor la corriente de arranque que la corriente normal a plena carga? 7. Un motor compuesto de c-d es más estable que un motor serie de c-d, y sus características de arranque son casi tan buenas como las de éste. Explique por qué. __ salida en watts = _____W ¿Cuál es la potencia de entrada (en watts) del motor de la Pregunta 1? ___entrada en watts = ____W

8. Compare los motores compuesto, en serie y en derivación, de acuerdo con:	c) la eficiencia
a) el par de arranque	
	d) regulación de velocidad
b) la corriente de arranque	
	7/100716416466

EL MOTOR DE INDUCCION DE ROTOR DEVANADO, PARTE I

- 1. Analizar la estructura de un motor trifásico de inducción de rotor devanado.
- 2. Exponer los conceptos de corriente de excitación, velocidad síncrona y deslizamiento en relación con un motor trifásico de inducción.
- Observar cómo influye el campo giratorio y la velocidad del rotor en el voltaje inducido en el rotor.

EXPOSICION

Hasta ahora se han estudiado campos giratorios del estator producidos por una potencia monofásica. La mayoría de las compañías de energía eléctrica generan y transmiten potencias trifásicas. La potencia monofásica que se utiliza en las viviendas se obtiene de una de las fases de la línea de potencia trifásica. En la industria, se utilizan generalmente motores trifásicos (polifásicos) y las compañías de energía eléctrica, suministran potencia trifásica a los usuarios industriales.

Cuando se utiliza potencia trifásica para crear un campo giratorio en el estator se aplica un principio semejante al usado en sistema de fase hendida y bifásicos (funcionamiento por capacitor). En el sistema trifásico se genera un campo magnético giratorio mediante tres fases, en lugar de dos. Cuando el estator de un motor trifásico se conecta a una fuente de alimentación trifásica, la corriente pasa por los tres devanados del estator y establece un campo magnético giratorio. Estas tres corrientes de excitación proporcionan la potencia reactiva para establecer el campo magnético giratorio. También proporcionan la potencia que consume el motor debido a las pérdidas en el cobre y en el hierro.

La velocidad del campo magnético giratorio queda determinada por la frecuencia de la fuente de alimentación trifásica y se conoce como velocidad síncrona. Las compañías de energía eléctrica regulan con precisión la frecuencia de los sistemas de energía eléctrica manteniéndola siempre al mismo nivel; por lo tanto, la velocidad síncrona del campo del estator (en r/min) permanece constante. (En efecto, se utiliza para hacer funcionar relojes eléctricos.)

El rotor devanado se compone de un núcleo con tres devanados en lugar de las barras conductoras del rotor de jaula de ardilla. En este caso, las corrientes se inducen en los devanados en la misma forma que lo harían en barras en cortocircuito. Sin embargo, la ventaja de usar devanados consiste en que las terminales se pueden sacar a través de anillos colectores, de modo que la resistencia y, por lo tanto, la corriente que pasa por los devanados, se puede controlar en forma eficaz.

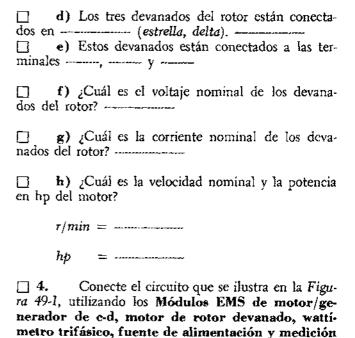
El campo giratorio del estator induce un voltaje alterno en cada devanado del rotor. Cuando el rotor está estacionario, la frecuencia del voltaje inducido en el rotor es igual a la de la fuente de alimentación. Si el rotor gira en el mismo sentido que el campo giratorio del estator, disminuye la velocidad a la que el flujo magnético corta los devanados del rotor. El voltaje inducido y su frecuencia bajarán también. Cuando el rotor gira a la misma velocidad y en el mismo sentido que el campo giratorio del estator, el voltaje inducido y la frecuencia caen a cero. (El rotor está ahora a la velocidad síncrona.) Por el contrario, si el rotor es llevado a la velocidad síncrona pero en sentido opuesto al del campo giratorio del estator, el voltaje inducido y su frecuencia serán el doble de los valores que se tienen cuando el rotor está parado.

En este Experimento de Laboratorio, se utilizará un motor auxiliar para impulsar el rotor, pero conviene hacer notar que, para una velocidad de rotor dada, los valores del voltaje inducido y de la frecuencia serán los mismos que si el rotor girara por sí solo.

INSTRUMENTOS Y EQUIPO

821 231
231
211
441
425
426
920
941
942

PROCEDIMIENTOS

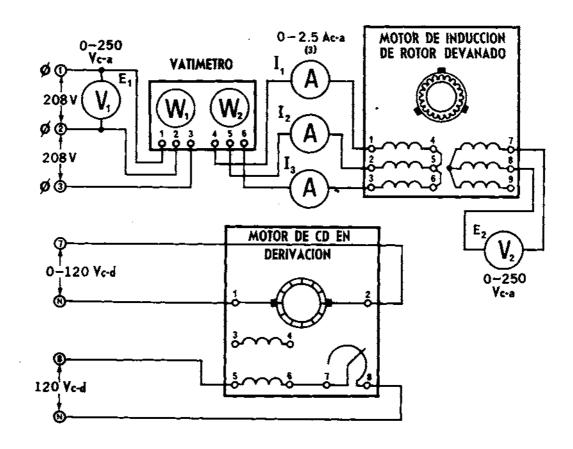
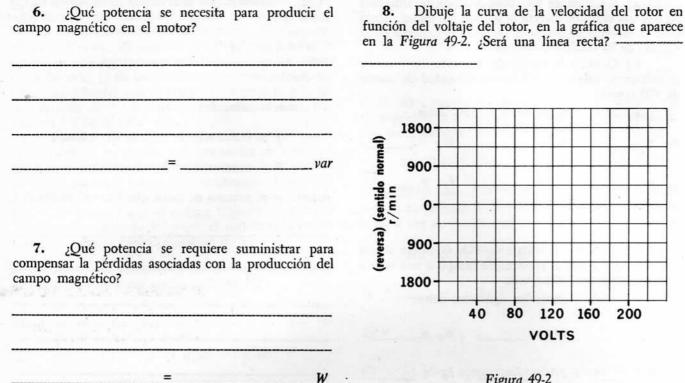

Advertencia: ¡En este Experimento de Laboratorio se manejan altos voltajes! ¡No haga ninguna conexión cuando la fuente esté conectada! ¡La fuente debe desconectarse después de hacer cada medición!

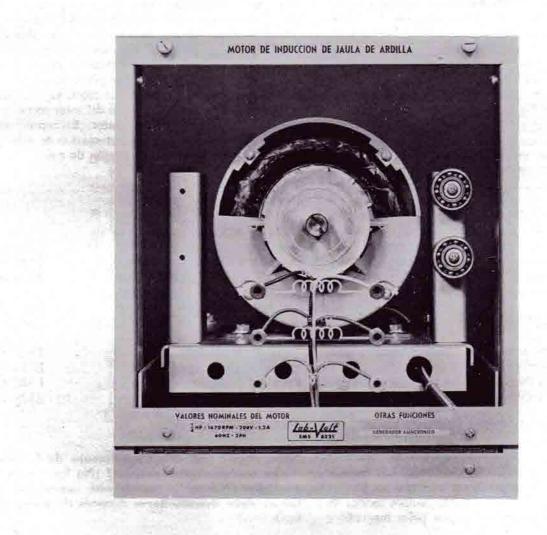
- 1. Examine la estructura del Módulo EMS 8231 del motor de inducción de rotor devanado, fijándose especialmente en el motor, los anillos colectores, las terminales de conexión y el alambrado.
- ☐ 2. Si observa el motor desde la parte posterior del módulo:
- a) Identifique los tres anillos colectores del rotor y las escobillas.
- ☐ b) Se pueden mover las escobillas? -----
- c) Observe que las terminales de los tres devanados del rotor son llevadas a los anillos colectores, mediante una ranura en el eje del rotor.

d) Identifique los devanados del estator. Observe que se componen de muchas vueltas de alambre de un diámetro pequeño, uniformemente espaciadas alrededor del estator.
e) Identifique los devanados del rotor. Observe que se componen de muchas vueltas de un alambre de diámetro ligeramente mayor, uniformemente espaciadas alrededor del rotor.
f) Observe la magnitud del entrehierro entre el rotor y el estator.
☐ 3. Observe lo siguiente en la cara delantera del módulo:
a) Los tres devanados independientes del estator están conectados a las terminales y,
D ¿Cuál es la corriente nominal de los devanados del estator?

c) ¿Cuál es el voltaje nominal de los devana-

dos del estatori


Figura 49-1

5. a) Observe que el motor/generador de c-d se conecta con una excitación fija de campo en derivación, a las terminales 8 y N de la fuente de alimentación (120V c-d). El reóstato de campo se debe hacer	d) Potencia reactiva
girar a su posición extrema en el sentido de las mane- cillas del reloj (para una resistencia mínima).	=var
b) Observe que la armadura se conecta a la salida variable de c-d de la fuente de alimentación, terminales 7 y N (0-120V c-d). © Observe que el estator del rotor devanado	[] 8. a) Conecte la fuente de alimentación y ajuste el voltaje de salida variable de c-d para una velocidad del motor de exactamente 900 r/min.
está conectado en estrella, y se encuentra en serie con los tres amperimetros y el wattimetro, a la salida fija	☐ b) Mida y anote los siguientes datos:
de 208V, 3\$\phi\$, de la fuente de alimentación, terminales 1, 2 y 3. \(\subseteq \text{d} \) Observe que el voltaje trifásico de entrada se mide por medio de V1 y que el voltaje trifásico de salida del rotor se mide por medio de V2.	Nota: Si el valor de E_2 es menor que el del Procedimiento 6 , desconecte la fuente de alimentación e intercambie dos de los tres cables del estator. $E_1 = \underline{\hspace{1cm}}, \qquad W_1 = \underline{\hspace{1cm}}, \qquad W_2 = \underline{\hspace{1cm}}$
☐ 6. a) Acople el motor/generador de c-d al motor de rotor devanado, por medio de la banda.	
b) Conecte la fuente de alimentación. Mantenga en cero el control del voltaje variable de salida (el motor de c-d debe estar parado).	$I_1 = $, $I_2 = $, $I_3 = $
$E_1 = $, $W_1 = $, $W_2 = $	C) ¿Son aproximadamente iguales la potencia real y el valor que se obtuvo antes?
$I_1 = $, $I_2 = $, $I_3 = $	9. a) Aumente el voltaje variable de salida de c-d a 120V c-d, y ajuste el reóstato de campo a una velo- cidad del motor de exactamente 1 800 r/min.
$E_2 = \underline{\hspace{1cm}}$	
☐ d) Desconecte la fuente de alimentación.	b) Mida y anote los siguientes datos:
7. Calcule lo siguiente:	$E_1 = $, $W_1 = $, $W_2 = $
a) Potencia aparente	$I_1 = $, $I_2 = $, $I_3 = $
	$E_2 = \underline{\hspace{1cm}}$
=VA	☐ e) Reduzca el voltaje a cero y desconecte la fuente de alimentación.
☐ h) Potencia real	d) En los Procedimientos 8 y 9, ¿ gira el motor en el mismo sentido o en sentido contrario al del campo giratorio del estator? Explique por qué.
☐ e) Factor de potencia	· · · · · · · · · · · · · · · · · · ·
=	

 ☐ 10. a) Intercambie las conexiones de la armadura de c-d, con el fin de invertir el sentido del motor. Haga girar el reóstato de campo a su posición extrema en el sentido de las manecillas del reloj. ☐ b) Conecte la fuente de alimentación y ajuste el voltaje de salida de c-d a una velocidad de motor de 900 r/min. ☐ c) Mida y anote los siguientes datos: 	 2. Sabiendo que la ecuación de la velocidad síncrona es: r/min = 120f/P en donde: r/min = velocidad síncrona
$E_1 = $, $W_1 = $, $W_2 = $	f = frecuencia de la línea de potencia
$I_1 = $, $I_2 = $, $I_3 = $	P = número de polos del estator
$E_2 = \underline{\hspace{1cm}}$	determine el número de polos que tiene el motor.
 ☐ 11. a) Aumente el voltaje variable de salida de c-d a 120V c-d y ajuste el reóstato de campo a una velocidad de motor de 1800 r/min. ☐ b) Mida y anote los siguientes datos: 	
$E_1 = $, $W_1 = $, $W_2 = $	Fig. 2-3-3-3
$I_1 = $, $I_2 = $, $I_3 = $	
E ₂ =	
 c) Reduzca a cero el voltaje y desconecte la fuente de alimentación. d) En los Procedimientos 10 y 11, ¿gira el rotor en el mismo sentido o en sentido contrario al del 	3. Calcule el deslizamiento del rotor (en r/min) que hubo en los Procedimientos 6, 8, 9, 10 y 11. (Deslizamiento en r/min = velocidad síncrona-velocidad del rotor.)
campo giratorio del estator? Explique por qué	deslizamiento $(6) =r/min$,
	deslizamiento (8) = $$
	deslizamiento $(9) =r/min$,
	deslizamiento (10) = $$
	deslizamiento (11) = $$
	4. Calcule el % de deslizamiento en los Procedimientos 6, 8, 9, 10 y 11.
	deslizamiento $(6) = \%$,
	deslizamiento (8) = $$ %,
DRUEDA DE COMOCIMIENTOS	deslizamiento $(9) =\%$,
PRUEBA DE CONOCIMIENTOS	deslizamiento (10) = %,
1. Como ya se sabe, el voltaje inducido en el de- vanado del motor es cero cuando éste gira a velocidad síncrona, ¿cuál es la velocidad síncrona del motor?	deslizamiento (11) = %.
velocidad síncrona = r/min	5. ¿Depende de la velocidad del rotor el valor de la corriente de excitación del motor trifásico?

EL MOTOR DE INDUCCION DE JAULA DE ARDILLA

A STATE OF THE STATE OF THE STATE OF

- 1. Analizar la estructura de un motor trifásico de jaula de ardilla.
- 2. Determinar sus características de arranque, de vacio y de plena carga.

EXPOSICION

El rotor más sencillo y de mayor aplicación en los motores de inducción, es el que se denomina de jaula de ardilla, de donde se deriva el nombre de motor de inducción de jaula de ardilla. El rotor de jaula de ardilla se compone de un núcleo de hierro laminado que tiene ranuras longitudinales alrededor de su periferia. Barras sólidas de cobre o aluminio se presionan firmemente o se incrustan en las ranuras del rotor. A ambos extremos del rotor se encuentran los anillos de corto circuito que van soldados o sujetos a las barras, formando una estructura sumamente sólida. Puesto que las barras en corto circuito tienen una resistencia mucho menor que la del núcleo, no es necesario que se les aísle en forma especial del núcleo. En algunos rotores, las barras v los anillos de los extremos se funden en una sola estructura integral colocada en el núcleo. Los elementos de corto circuito, en realidad son vueltas en corto circuito que llevan elevadas corrientes inducidas en ellas, por el flujo del campo del estator.

En comparación con el complicado devanado del rotor devanado, o con la armadura de un motor de c-d, el rotor de jaula de ardilla es relativamente simple. Es fácil de fabricar y generalmente trabaja sin ocasionar problemas de servicio.

En un motor de inducción de jaula de ardilla ensamblado, la periferia del rotor está separada del estator por medio de un pequeño entrehierro. La magnitud de este entrehierro es, en efecto, tan pequeña como lo permitan los requerimientos mecánicos. Esto asegura que, al efectuarse la inducción electromagnética ésta sea la más fuerte posible.

Cuando se aplica potencia al estator de un motor de inducción, se establece un campo magnético giratorio, conforme a todos los métodos que se han estudiado hasta aquí. Cuando el campo comienza a girar, sus líneas de flujo cortan las barras de corto circuito que están alrededor de la superficie del rotor de jaula de ardilla y generan voltajes en ellas por inducción electromagnética. Puesto que estas barras están en corto circuito con una resistencia muy baja, los voltajes inducidos en ellas producen elevadas corrientes que circulan por dichas barras del rotor. Las corrientes circulantes del rotor producen, a su vez, sus propios campos magnéticos intensos. Estos campos locales de flujo del rotor producen sus propios polos magnéticos

que son atraídos hacia el campo giratorio. Por lo tanto, el rotor gira con el campo principal.

El par de arranque del motor de inducción de jaula de ardilla es bajo, debido a que en reposo el rotor tiene una reactancia inductiva (X_L) relativamente grande con respecto a su resistencia (R). En estas condiciones, se podría esperar que la corriente del rotor tuviera un atraso de 90 grados en relación al voltaje del rotor. Por lo tanto, se puede decir que el factor de potencia del circuito es bajo. Esto significa que el motor es ineficiente como carga y que no puede tomar de la fuente de alimentación una energía realmente útil para su operación.

A pesar de su ineficiencia, se desarrolla uu par, y el motor comienza a girar. Conforme comienza a girar, la diferencia en velocidad entre el rotor y el campo rotatorio, o deslizamiento, va de un máximo del 100 por ciento a un valor intermedio, por ejemplo, el 50 por ciento. Conforme el deslizamiento se reduce en esta forma, la frecuencia de los voltajes inducidos en el rotor va en disminución, porque el campo giratorio corta los conductores a una velocidad menor, y esto, a su vez, hace que se reduzca la reactancia inductiva general del circuito. Al reducirse la reactancia inductiva el factor de potencia comienza a aumentar. Este mejoramiento se refleja en forma de un incremento en el par y un aumento subsecuente en la velocidad.

Cuando el deslizamiento baja a un valor comprendido entre el 2 y el 10 por ciento, la velocidad del motor se estabiliza. Esta estabilización ocurre debido a que el par del motor disminuye por disminuir los voltajes y corrientes inducidas en el rotor, ya que por el pequeño deslizamiento, las barras del rotor cortan poco flujo del campo giratorio del estator. En consecuencia, el motor presenta un control automático de velocidad similar a la del motor en derivación de c-d.

INSTRUMENTOS Y EQUIPO

Módulo de motor de inducción de	
jaula de ardilla	EMS 8221
Módulo de electrodinamómetro	EMS 8911
Módulo de wattímetro trifásico	EMS 8441
Módulo de fuente de alimentación	
$(0-120/208V, 3\phi)$	EMS 8821
Módulo de medición de c-a (250V)	EMS 8426
Módulo de medición de c-a	
(2.5/2.5/2.5/8A)	EMS 8425
Tacómetro de mano	EMS 8920
Cables de conexión	EMS 8941
Banda	EMS 8942

PROCEDIMIENTOS

Advertencia: ¡En este Experimento de Laboratorio se manejan altos voltajes! ¡No haga ninguna conexión cuando la fuente esté conectada! ¡La fuente debe desconectarse después de hacer cada medición!

- ☐ 1. Examine la construcción del Módulo EMS 8221 de motor de inducción de caja de ardilla, fijándose especialmente en el motor, las terminales de conexión y el alambrado.
- ☐ 2. a) Identifique los devanados del estator. Ob serve que se componen de muchas vueltas de alambre de un diámetro pequeño, uniformemente espaciadas alrededor del estator. (Los devanados del estator son idénticos a los de un motor de inducción de rotor devanado.)
- □ b) Identifique el abanico de enfriamiento.
- **e)** Identifique los anillos de los extremos del rotor de jaula de ardilla.
- d) Observe la longitud del entrehierro entre el estator y el rotor.
- **e)** Existe alguna conexión eléctrica entre el rotor y cualquier otra parte del motor?
- ☐ 3. Si observa el módulo desde la cara delantera:

- **b)** ¿Cuál es la corriente nominal de los devanados del estator?
- c) ¿Cuál es el voltaje nominal de los devanados del estator?
- ☐ d) ¿Cuál es la velocidad nominal y la potencia en hp del motor?

r/min = -----

hp = -----

☐ 4. Conecte el circuito que se ilustra en la Figura 52-1, usando los Módulos EMS de motor de jaula de ardilla, electrodinamómetro, wattímetro trifásico, fuente de alimentación y medición de c-a. ¡No acople el motor al dinamómetro todavía! Observe que los devanados del estator están conectados en estrella a través del wattimetro, a la salida trifásica variable de la fuente de alimentación, terminales 4, 5 y 6.

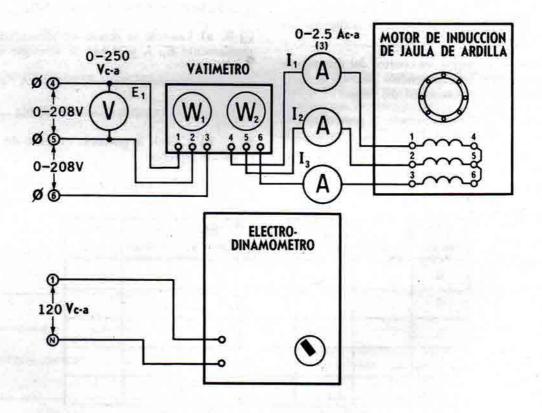


Figura 52-1

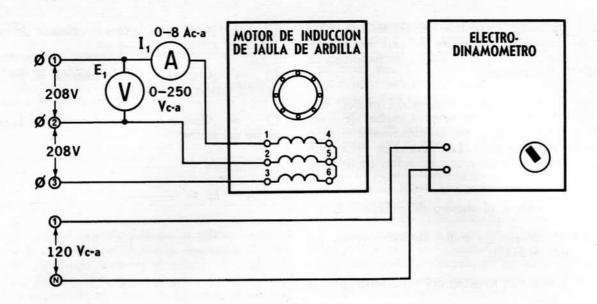


Figura 52-2

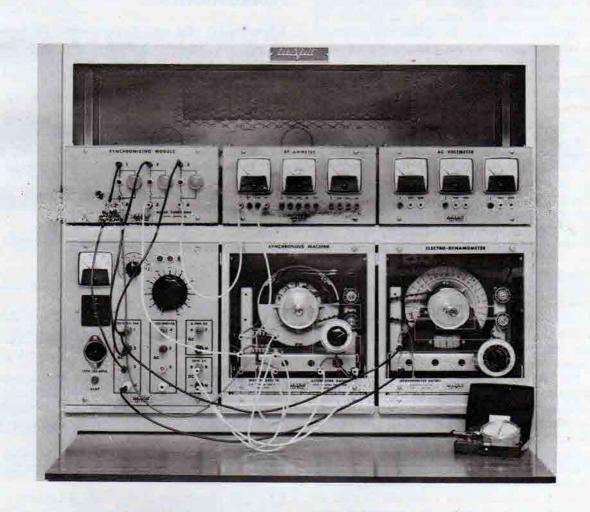
- \square 5. a) Conecte la fuente de alimentación y ajuste E_1 a 208V c-a. El motor debe comenzar a funcionar.
- □ b) Mida y anote en la *Tabla 52-1*, las tres corrientes de línea, las lecturas del wattímetro y la velocidad del motor.
- c) Reduzca el voltaje a cero y desconecte la fuente de alimentación.
- ☐ 6. a) Acople el motor al electrodinamómetro por medio de la banda.
- c) Repita el **Procedimiento 5** para cada uno de los pares anotados en la *Tabla 52-1*, manteniendo el voltaje de entrada en 208V c-a.
- d) Reduzca el voltaje a cero y desconecte la fuente de alimentación.

- ☐ 7. a) Conecte el circuito que aparece en la Figura 52-2. Observe que ahora se utiliza la salida trifásica fija de la fuente de alimentación, terminales 1, 2 y 3.
- **b)** Ponga la perilla de control del dinamómetro en su posición extrema haciéndola girar en el sentido de las manecillas del reloj (con el fin de darle al motor una carga máxima en el arranque).
- \square 8. a) Conecte la fuente de alimentación y mida rápidamente E_1 , I_1 y el par de arranque desarrollado.

$$E_1 = ---- V c$$
-a, $I_1 = ---- A c$ -a

□ b) Calcule la potencia aparente del motor para el par de arranque.

PAR (lbf. plg)	I; (amps)	I ₂ (amps)	I ₃ (amps)	W ₁ (waits)	W ₂ (watts)	VELOCIDAD (r/min)
0						
3						
6						
9						
12						


Tabla 52-1

PRUEBA DE CONOCIMIENTOS	е) рогенска теаг
1. Con los resultados de la Tabla 52-1, calcule las características en vacío del motor de jaula de ardilla.	
a) corriente media	d) potencia reactiva
= A c-a	e) factor de potencia
b) potencia aparente	
e) potencia real	f) potencia en hp
d) potencia reactiva	g) eficiencia
e) factor de potencia	3. Use los resultados del Procedimiento 8 y la Tabla 52-1, para hacer los siguientes cálculos de relaciones (use las características a 9 lbf.plg como valores a plena carga).
2. Con los resultados obtenidos en la Tabla 52-1 calcule las características a 9 lbf.plg del motor de jaula de ardilla.	a) corriente de arranque a corriente de plena carga
a) corriente media	b) par de arranque a par de plena carga
	//
b) potencia aparente	c) corriente de plena carga a corriente en vacio
=VA	

4. Compare las características de operación de jaula de ardilla con las del motor de rotor devanado.	1
	6. Si la frecuencia de la línca de alimentación fuera de 50 Hz: a) ¿A qué velocidad giraría el motor?
5. El motor de inducción de jaula de ardilla es una de las máquinas más seguras y más usadas en la industria. ¿Por qué?	b) ¿Aumentaría la corriente de excitación, se reduciría o permanecería igual?

EXPERIMENTO DE LABORATORIO Nº 53

EL MOTOR SINCRONO, PARTE I

OBJETIVOS

- Analizar la estructura del motor síncrono trifásico.
- Calcular las características de arranque del motor síncrono trifásico.

nando como en un motor de inducción. La jaula de ardilla sigue útil incluso después de que el motor ha llegado a la velocidad síncrona, ya que tiende a amortiguar las oscilaciones del rotor producidas por cambios repentinos en la carga. El módulo de motor síncrono/generador contiene un rotor con dispositivo de arranque de jaula de ardilla.

EXPOSICION

El motor síncrono deriva su nombre del término velocidad síncrona, que es la velocidad natural del campo magnético giratorio del estator. Como ya se vio antes, la velocidad natural de rotación está determinada por el número de pares de polos y la frecuencia de la potencia aplicada.

Al igual que el motor de inducción, el motor síncrono utiliza un campo magnético giratorio, pero a diferencia del motor de inducción, el par desarrollado no depende de las corrientes de inducción del rotor. En resumen, el principio de operación del motor síncrono es el siguiente: se aplica una fuente multifásica de c-a a los devanados del estator y se produce un campo magnético rotatorio. Se aplica una corriente directa a los devanados del rotor y se produce un campo magnético fijo. El motor está construido en tal forma que cuando estos dos campos magnéticos reaccionan entre sí, el rotor gira a la misma velocidad que el campo magnético giratorio. Si se aplica una carga al eje del rotor, éste tendrá un atraso momentáneo con relación al campo giratorio; pero seguirá girando a la misma velocidad síncrona.

Para entender cómo se produce este atraso, imagínese que el rotor está acoplado a un campo giratorio por medio de una banda elástica. Las cargas pesadas harán que se estire la banda de modo que la posición del rotor tendrá cierto atraso con respecto al campo del estator, pero el rotor seguirá girando a la misma velocidad. Si la carga es demasiado grande, el rotor se saldrá de sincronismo con el campo giratorio y, como resultado, se parará. En este caso, se dice que el motor está sobrecargado.

El motor síncrono no tiene par de arranque propio y su rotor de modo que, una vez parado el motor, no habría manera de hacer que el rotor entre en acoplamiento magnético con el campo magnético giratorio. Por esta razón, todos los motores síncronos tienen algún medio de arranque. La forma más sencilla de arrancar un motor síncrono es usar otro motor que lo impulse hasta que el rotor alcance aproximada-

que lo impulse hasta que el rotor alcance aproximadamente 90 por ciento de su velocidad síncrona. Entonces el motor de arranque se desconecta, y el rotor entra en acoplamiento con el campo giratorio. En la práctica, el método de arranque más usado consiste en que el rotor incluya un devanado de inducción de jaula de ardilla. Este devanado de inducción hace que el rotor alcance una velocidad próxima a la síncrona, funcio-

INSTRUMENTOS Y EQUIPO

Módulo de motor síncrono/generador Módulo de electrodinamómetro Módulo de fuente de alimentación	EMS 8241 EMS 8911
(0-120/208V, 3φ, 120V c-d, 0-120V c-d) Módulo de interruptor de sincronización Módulo de medición de c-a (8) Módulo de medición de c-a (250V) Tacómetro de mano Cables de conexión Banda	EMS 8821 EMS 8621 EMS 8425 EMS 8426 EMS 8920 EMS 8941 EMS 8942

PROCEDIMIENTOS

Advertencia: ¡En este Experimento de Laboratorio se manejan altos voltajes! ¡No haga ninguna conexión cuando la fuente esté conectada! ¡La fuente debe desconectarse después de hacer cada medición!

- ☐ 1. Examine la estructura del Módulo EMS 8241 de motor síncrono generador, fijándose especialmente en el motor, los anillos colectores, el reóstato, las terminales de conexión y el alambrado.
- ☐ 2. Observe el motor desde la parte posterior del módulo:
- **a)** Identifique los dos anillos colectores y las escobillas.
- b) ¿Se pueden mover las escobillas?
 c) Observe que las terminales de los dos deva-
- nados del rotor se llevan hasta los anillos colectores a través de una ranura en el eje del rotor.
- d) Identifique los devanados amortiguadores de e-d en el rotor. (Aunque sólo son dos devanados, están conectados en tal forma que sus fuerzas magnetomotrices actúan en oposición, creando así cuatro polos.)
- e) Identifique los cuatro polos salientes inmediatamente debajo de los devanados de amortiguación.
- f) Identifique el devanado del estator y observe que es idéntico al de los motores trifásicos de jaula de ardilla y de rotor devanado.

- □ b) ¿Cuál es el voltaje nominal de los devanados del estator?
- c) ¿Cuál es la corriente nominal de los devanados del estator?
- \square d) El devanado del rotor se conecta (a través del reóstato de 150 Ω) a las terminales y
- e) ¿Cuál es la corriente nominal del devanado del rotor?
- f) ¿Cuál es el voltaje nominal del devanado del rotor?
- g) ¿Cuál es la velocidad nominal y la potencia del motor?

r/min = -----

hp = ------

CARACTERISTICAS DE ARRANQUE

☐ 4. Conecte el circuito ilustrado en la Figura 53-1, utilizando los Médulos EMS de motor síncrono/generador, fuente de alimentación y medición de c-a. Observe que los tres devanados del estator están conectados en estrella a la salida trifásica fija de 208V de la fuente de alimentación, terminales 1, 2 y 3.

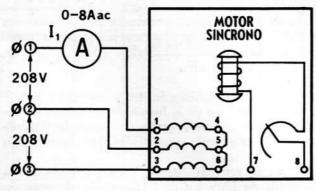


Figura 53-1

- ☐ 5. a) Conecte la fuente de alimentación. Observe que el motor comienza suavemente a funcionar y sigue operando como un motor ordinario de inducción.
 - b) Observe el sentido de rotación.

- Desconecte la fuente de alimentación e intercambie dos de los tres cables que van a la fuente de alimentación.
- d) Conecte la fuente de alimentación y observe el sentido de rotación.

- e) Desconecte la fuente de alimentación.
- ☐ 6. Conecte el circuito que aparece en la Figura 53-2, con los Módulos EMS del electrodinamómetro y el interruptor de sincronización. Acople el motor al electrodinamómetro por medio de la banda.

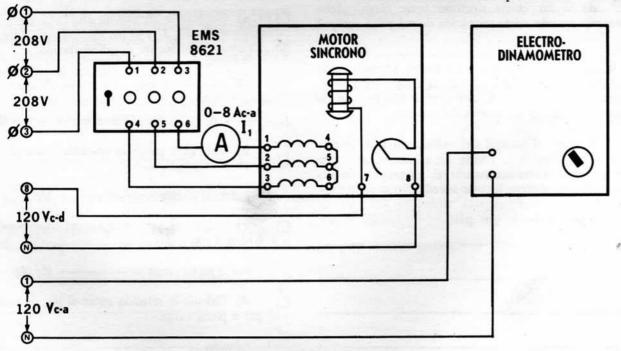


Figura 53-2

☐ 7. a) El módulo de interruptor de sincronización se utilizará como interruptor para la potencia trifásica que va a los devanados del estator. Ponga el interruptor en la posición "off".	d) ¿Funciona el aparato como motor de inducción? e) Ajuste cuidadosamente la salida de la fuente de alimentación a 120V c-d, según lo indique el me-
h) El electrodinamómetro se conecta a la salida fija de 120V c-a de la fuente de alimentación, terminales I y N. Ajuste la perilla de control del dinamómetro al 40 por ciento aproximadamente de excitación	didor de la fuente de alimentación.
c) El rotor del motor síncrono se conecta a la salida fija de 120V c-d de la fuente de alimentación 8 y N. Ajuste el reóstato de campo a una resistencia cero (la perilla de control debe ponerse en la posición extrema, haciéndola girar en el sentido de las manecillas del reloj).	
☐ 8. a) Conecte la fuente de alimentación. A continuación aplique potencia trifásica cerrando el interruptor de sincronización y observe lo que sucede. ¡No aplique la potencia más de 10 segundos!	D a) Netá enerendo el metus como metos cín
b) Describa lo que sucede.	g) ¿Está operando el motor como motor sín- crono?
	☐ h) Reduzca el voltaje a cero y desconecte la fuente de alimentación.
	☐ 10. a) Conecte el circuito que se ilustra en la Figura 53-3. Observe cómo está conectado el motor síncrono; ésta es la configuración normal de arranque (como un motor de inducción trifásico de jaula de ardilla).
□ c) ¿Qué lectura dio el amperímetro?	b) Ajuste la perilla de control del dinamómetro en su posición extrema haciéndola girar en el sentido de las manecillas del reloj (a fin de proporcionarle al motor síncrono la máxima carga en el arranque).
d) Si un motor síncrono tiene carga, ¿debc arrancarlo cuando existe excitación de c-d en su campo?	\square 11. a) Conecte la fuente de alimentación y mida rápidamente E_1 , E_2 , I_1 y el par de arranque desarrollado. Desconecte la fuente de alimentación.
9. a) Conecte el rotor del motor síncrono a la salida variable de 0-120V c-d de la fuente de alimentación, terminales 7 y N. No cambie ninguna de las	$E_1 = V c-a$, $E_2 = V c-a$
otras conexiones o los ajustes del control.	$I_1 = A c - a$, par de arranque = lbf.plg
b) Con el control del voltaje variable de sali- da en cero, conecte la fuente de alimentación. Apli- que potencia trifásica cerrando el interruptor de sin-	☐ b) Calcule la potencia aparente suministrada al motor en el arranque.
cronización y observe lo que sucede.	potencia aparente = VA
☐ c) Describa lo que pasó.	Calcule el par a plena carga correspondiente a 1/4 hp a 1 800 r/min.
	par a plena carga = lbf.plg
	d) Calcule la relación entre el par de arτanque y el par a plena carga.
	relación =

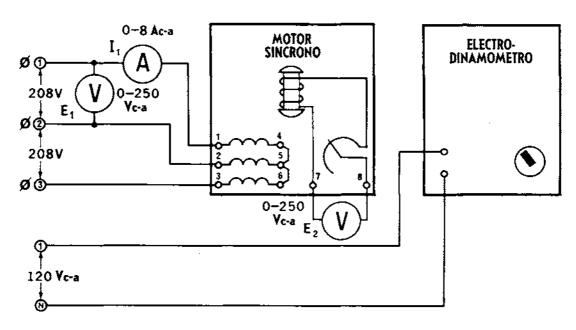
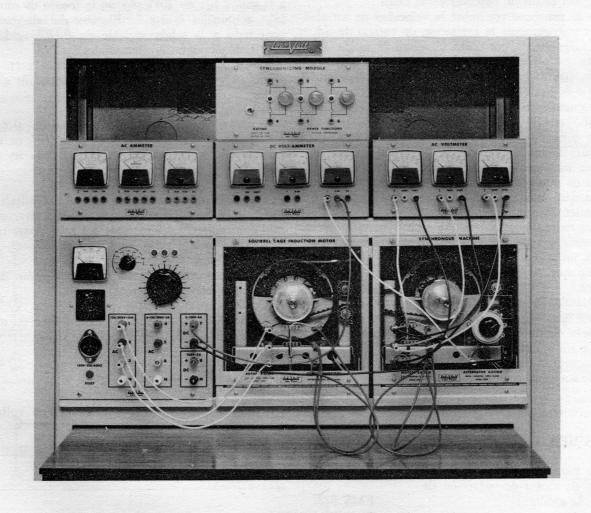



Figura 53-3

e) Explique por qué se indujo un alto voltaje en c-a, E_2 en los devanados del rotor.	2. Si se quitara el devanado de jaula de ardilla de un motor síncrono, ¿podría arrancar por sí solo?
	3. Indique dos razones por las que el devanado del rotor de un motor síncrono se conecta casí siempre a una resistencia externa durante el arranque.
	a)
\square 12. Sin cambiar el circuito, conecte la fuente de alimentación y, para reducir la carga, haga girar con lentitud la perilla de control del dinamómetro en sentido contrario al de las manecillas del reloj. El motor aumentará a velocidad plena y funcionará como motor de inducción de jaula de ardilla. Observe el efecto producido en el voltaje inducido E_2 .	b)
a) ¿Por qué se reduce E2 conforme se incrementa la velocidad del motor?	
PRUEBA DE CONOCIMIENTOS 1. ¿Qué precauciones deben tomarse durante el período de arranque de un motor síncrono?	4. Compare las características de arranque del motor síncrono con las del motor de inducción trifásico de jaula de ardilla (Experimento de Laboratorio Nº 52).

EXPERIMENTO DE LABORATORIO Nº 56

EL ALTERNADOR TRIFASICO

CBJETIVOS

- Obtener la curva de saturación en vacío del alternador.
- Obtener las características de corto circuito del alternador.

EXPOSICION

Los términos generador de corriente alterna, generador síncrono, alternador síncrono y alternador, a menudo se utilizan indistintamente en libros de ingeniería. Puesto que los generadores síncronos se utilizan mucho más que los generadores de inducción en esta obra, el término alternador se aplica sólo a los primeros.

Los alternadores son la fuente más importante de energía eléctrica. Los alternadores generan un voltaje de c-a cuya frecuencia depende totalmente de la velocidad de rotación. El valor del voltaje generado depende de la velocidad, de la excitación del campo en c-d y del factor de potencia de la carga.

Si se mantiene constante la velocidad de un alternador y se aumenta la excitación de campo de c-d, el flujo magnético y, por tanto, el voltaje de salida, aumentarán en proporción directa a la excitación. No obstante, con incrementos progresivos en la corriente de campo de c-d, el flujo alcanzará finalmente un valor lo suficientemente alto para saturar el hierro del alternador.

La saturación del hierro significa que, para un incremento dado de la corriente de campo de c-d, se tendrá un incremento menor en el flujo. Para conocer el grado de saturación se puede medir el voltaje generado, ya que éste también se relaciona directamente con la intensidad del flujo magnético.

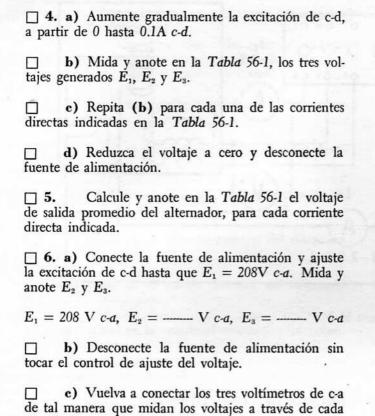
Las tres fases del alternador están espaciadas mecánicamente a intervalos idénticos unas de otras y, por lo tanto, los voltajes respectivos generados no están en fase, sino que están defasados entre sí en 120 grados eléctricos.

Cuando un alternador que trabaja produciendo su voltaje nominal de salida se somete repentinamente a un corto circuito, habrá momentáneamente corrientes de gran intensidad. Sin embargo, al subsistir el corto circuito, las corrientes intensas disminuirán rápidamente a valores seguros.

INSTRUMENTOS Y EQUIPO

Módulo motor/generador síncrono Módulo de motor de inducción de	EMS 8241
jaula de ardilla	EMS 8221
Módulo de interruptor de sincronización	EMS 8621

Módulo de fuente de alimentación (120/208V, 3φ, 0-120V c-d)	EMS 8821
Módulo de medición de c-a (250/250/250Y)	EMS 8426
Módulo de medición de c-a (2.5/25A)	EMS 8425
Módulo de medición de c-d (0.5/2.5A) Cables de conexión Banda	EMS 8412 EMS 8941 EMS 8942


PROCEDIMIENTOS

Advertencia: ¡En este Experimento de Laboratorio se manejan altos voltajes! ¡No haga ninguna conexión cuando la fuente esté conectada! ¡La fuente debe desconectarse después de hacer cada medición!

- [] 1. Conecte el circuito ilustrado en la Figura 56-1, usando los Módulos EMS de motor/generador síncrono, motor de jaula de ardilla, fuente de alimentación y medición. El motor de jaula de ardilla se usará para impulsar el motor/generador síncrono como alternador; durante este Experimento de Laboratorio, se supondrá que tiene velocidad constante. Observe que el motor de jaula de ardilla está conectado a la salida fija de 208V 3\$\phi\$ de la fuente de alimentación, terminales 1, 2 y 3. El rotor del alternador va conectado a la salida variable de 0-120V c-d de la fuente de alimentación, terminales 7 y N.
- ☐ 2. a) Acople el motor de jaula de ardilla al alternador, mediante la banda.
- b) Ajuste el reóstato del campo del alternador a su posición extrema moviendo el control en el sentido de las manecillas del reloj (para una resistencia cero).
- e) Ponga la perilla de control del voltaje de la fuente a su posición extrema haciéndola girar en sentido contrario a las manecillas del reloj (para un voltaje en c-d igual a cero).
- 3. a) Conecte la fuente de alimentación. El motor debe comenzar a funcionar.
- \Box **b)** Siendo nula la excitación de c-d, mida y anote E_1 , E_2 y E_3 (use las escalas más bajas de los voltímetros).

 $E_1 = ----- V c-a$, $E_2 = ----- V c-a$, $E_3 = ----- V c a$

□ c-a	e) Explicuando no l	ique por que hay excitació	se gene n en c-d.	ra un	voltaje de
			······································		

d) Conecte la fuente de a	alimentación. Mida
y anote los voltajes generados en	
estator conectado en estrella.	

uno de los tres devanados del estator.

$$E_{1\ a\ 4} = ----- V \ c-a, \quad E_{2\ a\ 5} = ----- V \ c-a$$

$$E_{3\ a\ 6} = ----- V \ c-a$$

I ₁ (amps)	E ₁ (volts)	E ₂ (volts)	E ₃ (valts)	E _{Cid} (Promedio)
0				
0.1				
0.2				
0.3				
0.4				
0.5				
0.6				
0.7				
0.8				
0.9				

Tabla 56-1

- ☐ e) Reduzca el voltaje a cero y desconecte la fuente de alimentación.
- f) Compare los resultados de (a) y (d). ¿Coinciden con los que se obtendrían normalmente de una fuente de alimentación trifásica convencional?

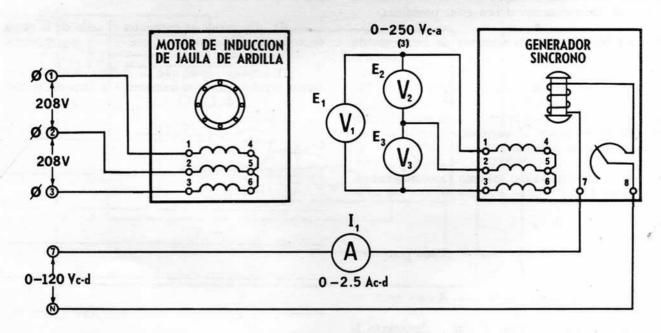


Figura 56-1

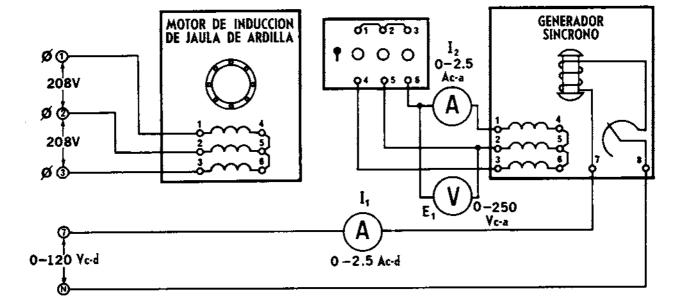


Figura 56-2

Observe que el interruptor de sincronización EMS. Observe que el interruptor está conectado de tal manera que, al certarlo, queden en corto circuito directo los devanados del alternador.	1. a) En la gráfica de la Figura 56-3, marque los valores promedio de voltaje en función de los valores de corriente de c-d, tomados de la Tabla 56-1.
 B. a) Abra el interruptor de sincronización. □ b) Conecte la fuente de alimentación y ajuste la excitación de c-d hasta que E₁ = 208V c-a. El motor debe estar funcionando y las tres lámparas del módulo de sincronización deben estar prendidas. □ e) Mida y anote la corriente de excitación de c-d I₁. I₁ = —— A c-d 	 b) Trace una curva continua que pase por los puntos marcados. c) ¿Hasta qué valor forma una línea más o menos recta la curva del voltaje? d) ¿En dónde se encuentra el codo de la curva de saturación? V c-a. e) Explique por qué el voltaje aumenta con menor rapidez cuando se incrementa la corriente de c-d.
d) Cierre el interruptor de sincronización para poner en corto circuito el alternador; observe el comportamiento de la corriente alterna I_2 .	
e) ¿Hasta qué valor máximo (aproximadamente) aumentó I ₂ ? I ₂ = A c-a	
\Box f) ¿Cuál es el valor final de estado permanente de I_2 e I_1 ? $I_1 = A c-d, I_2 = A c-d$	
g) Reduzca el voltaje a cero y desconecte la fuente de alimentación.	

debe operar un alternador cerca del codo de su curva de saturación.	quemarse cuando está en un corto circuito permanen te, que un generador en derivación de c-d con excita ción independiente. Explique esto.

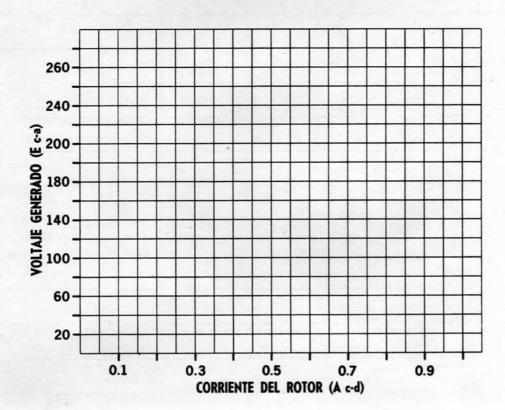


Figura 56-3

EXPERIMENTO DE LABORATORIO Nº 58

SINCRONIZACION DEL ALTERNADOR

OBJETIVOS

- Aprender cómo se sincroniza un alternador al sistema de servicio eléctrico.
- Entender cómo puede alterarse el proceso de sincronización debido a una secuencia de fase inadecuada.

EXPOSICION

La frecuencia de un gran sistema de energía eléctrica está determinada por la velocidad de rotación de varios alternadores muy potentes, todos ellos conectados mediante diversas líneas de unión a la red general. La inercia colectiva y la potencia de estos generadores es tan enorme que ninguna carga o perturbación puede cambiar su velocidad de rotación. Por lo tanto, la frecuencia de un sistema eléctrico es notablemente estable.

Si un alternador hade producir potencia para un sistema eléctrico existente, debe operar a la misma frecuencia que dicho sistema. Un sistema cuya frecuencia es 60,000Hz, no puede recibir potencia de un alternador que opera a 60,001Hz. Tanto uno como otro deben operar exactamente a la misma frecuencia. Esto no es tan difícil de lograr como parece a primera vista, pues cuando un alternador se conecta a un sistema existente, automáticamente entran en juego fuerzas que mantienen constante su frecuencia.

La sincronización de un alternador con un gran sistema de alumbrado público llamado a veces circuito u "omnibus infinito" es como acoplar un engrane pequeño con otro de tamaño gigantesco y de gran potencia. Si los dientes de los dos engranes están debidamente sincronizados en el momento de contacto, el acoplamiento será suave. Sin embargo, si los dientes del engrane pequeño chocan con los dientes del grande en el instante crítico, se producirá un choque y es posible que el engrane más pequeño resulte dañado.

Para etectuar una sincronización suave de un alternador se requiere primeramente que su frecuencia sea igual a la de la fuente. Además, la secuencia de fases (o rotación) debe ser la misma también. Volviendo al ejemplo de los engranes, a nadie se le ocurriría acoplar dos engranes cuyos dientes de contacto tuvieran velocidades opuestas aunque de igual valor.

La siguiente cosa que se debe observar cuando se acoplan dos engranes, es ver que el diente de uno quede dentro de la ranura del otro. En términos eléctricos esto significa que el voltaje de un alternador debe estar en fase con el voltaje de la fuente.

Por último, cuando se acoplan dos engranes, siempre se escoge un tamaño de diente que sea compatible con el engrane maestro. Desde el punto de vista eléctrico, la amplitud de voltaje de un alternador debe ser idéntica a la amplitud del voltaje de la fuente. Una vez que se satisfacen estas condiciones, el alternador está perfectamente sincronizado con la red, y el interruptor que está entre ambos se puede cerrar.

INSTRUMENTOS Y EQUIPO

Módulo de mo	otor/generador síncrono	EMS	8241
Módulo de mo	otor/generador de c-d	EMS	8211
Módulo de inte	erruptor de sincronización	n EMS	8621
Módulo de fue	ente de alimentación		
(120/208V 3	φ, 0-120V c-d, 120V c-d)	EMS	8821
Módulo de me	edición de c-a (250/250V) EMS	8426
Módulo de me	edición de c-a (2.5Å)	EMS	8425
Tacómetro de	mano	EMS	8920
Cables de conc	exión	EMS	8941
Banda		EMS	8942

PROCEDIMIENTOS

Advertencia: ¡En este Experimento de Laboratorio se manejan altos voltajes! ¡No haga ninguna conexión cuando la fuente esté conectada! ¡La fuente debe desconectarse después de hacer cada medición!

- 1. Conecte el circuito que aparece en la Figura 58-1, utilizando los Módulos EMS de motor/generador síncrono, motor/generador de c-d, interruptor de sincronización y de medición. Observe que la salida del alternador está conectada, a través del interruptor de sincronización, a la salida trifásica fija de 208V de la fuente de alimentación, terminales 1, 2 y 3. El rotor del alternador va conectado a la salida fija de 120V c-d de la fuente de alimentación, terminales 8 y N. El motor en derivación de c-d se conecta a la salida variable de 0-120V c-d de la fuente de alimentación, terminales 7 y N.
- ☐ 2. a) Acople el motor de c-d al alternador por medio de la banda.
- **b)** Ponga el reóstato de campo del motor de c-d en su posición extrema, haciéndolo girar en el sentido de las manecillas del reloj (para resistencia mínima).
- c) Cambie el reóstato de campo del alternador a la otra posición extrema, haciéndolo girar en sentido contrario al de las manecillas del reloj (para resistencia máxima).
- d) Ponga el interruptor de sincronización en posición abierta.
- 3. a) Conecte la fuente de alimentación y, con el tacómetro de mano, ajuste la salida de la fuente de alimentación para una velocidad del motor de aproximadamente 1 800 r/min.
- \Box **b)** Mida el voltaje que proporciona la compañía de luz y fuerza E_2 .

$$E_2 = --- V c - a$$

c) Ajuste la excitación de c-d del alternador hasta que el voltaje de salida de éste, E₁, sea igual al voltaje que proporciona la compañía de luz y fuerza, E₂. Nota: Estos dos voltajes deben mantenerse iguales durante el resto de este Experimento de Laboratorio.

d) Las tres luces de sincronización deben par-5. a) Cierre el interruptor de sincronización cuanpadear, encendiéndose y apagándose intermitentemente. do los tres focos estén apagados, y observe qué pasa con I_1 en el momento en que cierra el interruptor. ☐ 4. a) Ajuste con cuidado la velocidad del motor de c d hasta que la frecuencia de encendido de las lámparas sea bastante baja. b) ¿Se encienden y se apagan las tres luces al mismo tiempo? -c) Si no todas se oscurecen y abrillantan simultáneamente, la secuencia de fase es incorrecta. Desconecte la fuente de alimentación e intercambie dos de los b) Cierre el interruptor de sincronización cuancables que salen del estator. do los tres focos estén opacos y observe cómo varía I_1 en d) Ajuste con cuidado la velocidad del motor ese momento. hasta que las tres luces aumenten y disminuyan lentamente. La frecuencia del alternador es muy semejante a la de la compañía de luz y fuerza. e) Cuando los tres focos se hayan apagado por completo, los voltajes del alternador y del sistema estarán en fase. f) Si todos los focos emiten luz continua, los voltajes del alternador y del sistema están defasados 180 c) Cierre el interruptor de sincronización cuangrados. (Esta condición es la de diente-diente y el indo los tres focos tengan una luz tenue y observe las vaterruptor de sincronización nunca se debe cerrar en esriaciones de I_1 en ese momento. tas condiciones.) g) Verifique si los dos voltajes E_1 y E_2 son iguales. Si no es así, ajuste de nuevo la excitación de c-d del alternador.

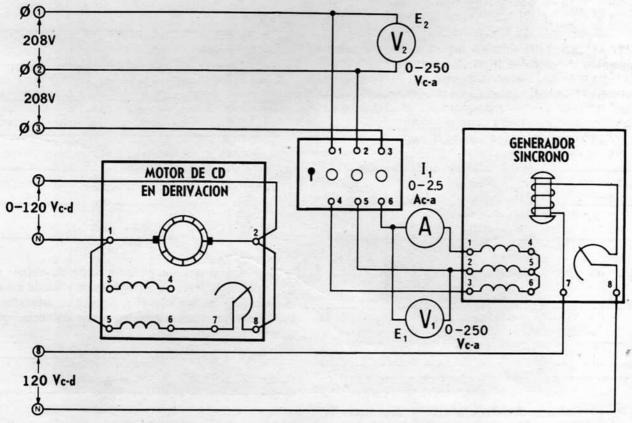


Figura 58-1

\square 6. a) Con el interruptor de sincronización abierto ajuste la excitación de c-d del alternador hasta que el voltaje de salida $E_1 = 250 \text{V } c\text{-}a$.	f) ¿Córho se puede sincronizar nuevamente el alternador sin invertir el motor de c-d?		
☐ b) Ajuste la velocidad del motor hasta que los tres focos estén sincronizados.			
\Box c) Cierre el interruptor de sincronización cuando las tres luces estén sumamente bajas y observe el efecto en I_1 en el momento de cierre, y un poco después.			
1, en el momento de cierre =	PRUEBA DE CONOCIMIENTOS		
	1. ¿Qué condiciones se deben satisfacer para po- der sincronizar un alternador a una línea de potencia trifásica existente?		
I, después del cierre =			
	2. Un alternador podría sufrir grandes daños me-		
d) Abra el interruptor de sincronización.	cánicos durante el proceso de sincronización con la lí- nea de alimentación. ¿En cuáles dos condiciones pue- de suceder esto?		
e) Reduzca el voltaje a cero y desconecte la fuente de alimentación.			
☐ 7. a) Invierta la rotación del motor de c-d, inter- cambiando el campo en derivación.			
☐ b) Trate de sincronizar el alternador como antes.			
e) ¿Cómo reaccionaron los focos?			
☐ d) ¿Qué significa esto?	3. Un alternador puede generar un voltaje diferente del de la línea de alimentación y puede no estar exactamente en fase con ella, pero debe satisfacer una condición para que pueda entregarle potencia. ¿Cuál es esta condición?		
 □ e) Reduzca el voltaje a cero y desconecte la fuente de alimentación. 			