Nombre de la materia: Sistemas Eléctricos de Distribución II

Clave: IA0501-T

Horas/semana: 3
Duración semanas: 16
Total del horas: 48
Creditos: 6

Prerrequisitos: IA0500-T

Objetivos del curso:

- 1.- Comprender la misión de los sistemas de distribución.
- 2.- Analizar los aspectos matemáticos necesarios para el análisis de un sistema de distribución.
- 3.- Aprender las características de diseño de los circuitos de media tensión.
- 4.- Analizar la importancia de la confiabilidad en circuitos de media tensión.
- 5.- Estudiar los aspectos económicos relacionados con la distribución de energía en circuitos de media tensión.
- 6.- Entender las variables que intervienen en la definición de áreas de servicio de las subestaciones de distribución.
- 7.- Estudiar los aspectos de confiabilidad del suministro de potencia a las subestaciones de distribución.

Programa sintético:

1 Introducción	9 Hrs.
2 Redes de media tensión	18 Hrs.
3 Planeación de áreas de servicio para subestaciónes de distribución	9 Hrs.
4 Características de confiabilidad en el suministro de potencia en las	
subestaciones de distribución	8 Hrs.
5 Evaluaciones.	4 Hrs.

Programa desarrollado.

- - 1.1.- Misión de un sistema de distribución.
 - 1.2.- Fasores.- Forma polar, rectangular y exponencial.
- 1.3.- Relación fasorial entre voltaje y corriente en una resistencia, reactancia y capacitancia.
- 1.4.- Ángulo de fase en los equipos eléctricos y elementos que forman a un sistema de distribución.
 - 1.5.- Potencia instantánea para una carga resistiva, inductiva y capacitiva.
 - 1.6.- Potencia compleja.
- 1.7.- Circuito trifásico balanceado. Análisis de voltajes y corrientes en el sistema trifásico balanceado y su circuito equivalente de fase a neutro.
 - 1.8.- Crecimiento de la carga en un sistema de distribución.

2 Redes de media tensión	8 Hrs.
2.1 Misión de las redes de media tensión.	
2.2 Aspectos de diseño de los circuitos de media tensión.	
2.2.1 Redes aéreas o subterráneas.	
2.2.2 Esquema unitroncal o multitroncal.	_
2.2.3 Características de las áreas de servicio de un circuito de media tension	ón.
2.2.4 Cantidad necesaria de circuitos de media tensión.	
2.3 Confiabilidad del suministro.	
2.3.1 Índices de confiabilidad.	
2.3.2 Análisis de factores que afectan la frecuencia de interrupciones.	
2.3.3 Análisis de factores que afectan la duración de interrupciones.	
2.4 Análisis del flujo de potencia en un circuito radial de media tensión.	
2.4.1 Características de la carga de los circuitos de media tensión, curva de	e carga
diaria.	
2.4.2 Formación de nodos de carga.	
2.4.3 Caída de voltaje y perdidas de potencia y energía por circuito.	
2.5 Control de la caída de voltaje en el circuito de media tensión.	
2.5.1 Compensación de potencia reactiva.	
2.5.2 Instalación de reguladores de voltaje.	
2.5.3 Disminución de impedancia en la red de media tensión.	oc do
2.5.4 Disminución de la carga incrementando nuevas trayectorias o circuito media tensión.	JS de
2.5.5 Incrementando la tensión en media tensión.	
2.6 Control de perdidas de potencia y energía en las redes de media tensión.	
2.6.1 Compensación de potencia reactiva.	
2.6.2 Selección del calibre de conductor (calibre de conductor económico).	
2.6.3 Adición de nuevos circuitos de media tensión.	
2.6.4 Cambio de tensión.	
2.6.5 Adición de una nueva subestación de distribución.	
2.7 Conclusiones.	
	Hrs.
3.1 Aspectos generales de diseño.	
3.2 Localización, capacidad y área de servicio.	
3.3 Planeación de nuevas subestaciones de distribución.	
3.4 Conclusiones.	
4 Características de confiabilidad en el suministro de potencia a las subestaciones	de
	B Hrs.
4.1 Aspectos de diseño.	
4.2 Índices de confiabilidad de líneas de subtransmisión.	
4.3 Control de la caída de voltaje, perdidas y compensación de potencia reactiva	a en
líneas con carga alta.	
4.4 Conclusiones.	
5 Evaluaciones.	4 Hrs.
Metodología de enseñanza aprendizaje.	
Revisión de conceptos y principios. (X)	

Ejercicios fuera de clase. (X)

Metodología de evaluación.

Asistencia. (X)
Tareas. (X)
Elaboración proyectos. (X)
Exámenes. (X)

Bibliografía:

Texto.

El arte de distribuir energía eléctrica.

M. C. Francisco Hernández Cortes.

Libros de consulta.

1.- H. Lee Willis, Power Distribution Planning Reference Book.
Marcel Dekker.

Marcel Dekkel.

2.- Olle I. Elgerd, Electric Energy Systems Theory.

McGraw-Hill Book Company.

3.- B.M Weedy, Electric Power Systems.

John Wiley and Sons.

4.- Electricity Distribution Network Design.

E. Lakervi and J. Holmes.

Peter Pereginus Ltd. 1995

5.- Electrical Distribution Systems Protection.

Cooper Power Systems 1990.

6.- Electrical Power Systems Quality.

R. Dugan and McGranagham

Mc Graw Hill

7.- Normas de distribución y construcción

Líneas aéreas y subterráneas.

Comisión Federal de Electricidad.

8.- Transmisión and Distribution Reference Book.

Westinghouse Electric Corporation.

9.- Distribution Systems Reference Book.

Westinghouse Electric Corporation.

Revisó:

M. C. Francisco Hernández Cortes.